

MPE2000AC48_200AC24 medical power supply

90-264VAC Input; Outputs: 48V/2100W; 24V/100W; 5VSB/0.25W

The MPE2000AC48_200AC24 is a multiple output, medical grade power supply that is fan cooled and designed for stand-alone use. The power supply has special design considerations for medical requirements, as well as three output voltages and constant current charging ability at the supplies output current limit. The supply is also designed for ease of use with enables for the main and secondary output as well as a global enable for all outputs.

Applications

The MPE2000AC48 rectifier is designed and tested for deployment into embedded medical DC power applications where patient safety is of the utmost importance. Designed with a rugged power train to support high transient demand laser devices, the MPE2000 is ideal for Industrial medical applications. As a system DC rectifier the MPE2000 can be designed into parallel for higher power applications as well as into distributed power architectures for divers applications. The MPE2000 is generally applicable across Bio-science and life science applications where patient safety and support for highly demanding DC loads are critical success factors.

Features

- Form factor: 11.0" (L) x 5.0" (W) x 5.0" (H)
- Compliant to RoHS Directive 2011/65/EU and amended Directive (EU) 2015/863
- Wide operating temperature range
- Universal input range
- Meeting medical approval ratings
- Meeting medical creepage and clearance requirements
- Low leakage current rating

- Class B EMI performance
- Two main outputs & one auxiliary output
- PMBUS communication protocol
- High MTBF design
- Easy connectivity

Technical Specifications

Absolute Maximum Ratings

Stresses over the absolute maximum ratings can cause permanent damage to the device. These are absolute stress ratings only. Functional operation of the device is not implied at these or any other conditions over those given in the operations sections of the data sheet. Exposure to absolute maximum ratings for extended periods can adversely affect the device reliability.

Parameter	Device	Min	Max	Unit
Input Voltage: Continuous	VIN	90	264	V _{AC}
Operating Ambient Temperature	TA	-20	70	°C
Storage Temperature	T _{STG}	-40	85	°C
Humidity (non-condensing)		5	95	%
Altitude			3000	m

Electrical Specifications

Parameter	Device	Min	Тур	Max	Unit
Operational Range	V _{IN}	90	115/230	264	V _{AC}
Frequency range (ETSI 300-132-1 recommendation)	F _{IN}	45	50/60	65	Hz
Main Output Turn OFF	V _{IN}			80	V _{AC}
Main Output Turn ON	V _{IN}	85			V _{AC}
Hysteresis between turn OFF and turn ON	VIN	5			V _{AC}
Efficiency (T_a=25°C, V_{IN}=230V_{AC}, V_1=48V & V_2=24V, inc. fan)					
20% load	η		90.0		%
50% load	η		93.5		%
100% load	η		92.0		%
Maximum Input Current					
V _{IN} =100V _{AC}	I _{IN}			20	A _{AC}
V _{IN} =180V _{AC}	I _{IN}			20	A _{AC}
Cold Start Inrush Current	I _{IN}			40	Apeak
Turn on delay time				3	sec
Power factor (V_{AC} =115/230 V_{AC}),					
I _{out} =50% I _{o_max}	PF		0.96		
I _{out} =100% I _{o_max}	PF		0.99		
Holdup time (V _{out} ≥ 40V, T _{amb} =25°C)					
V _{IN} =115V _{AC} ,1500W load	T _{hold}	15			ms
V _{IN} =230V _{AC} ,2100W load		15			
Leakage current (V _{IN} =264V _{AC} , F=60Hz)	l _{leakage}			300	uA _{RMS}
Isolation Input/Output		4000			V _{AC}
Isolation Input/Frame		1500			V _{AC}
Isolation Output/Frame		1500			V _{DC}
Isolation $48V_{out}/24V_{out}$, $48V_{out}/5VSB$, $24V_{out}/5VSB$ (between		2321			V _{DC}

Electrical Specifications

48VDC MAIN OUTPUT					
Parameter	Symbol	Min	Тур	Max	Unit
Output Power					
Low line 90-180V _{AC}				(8.88*V _{AC} + 501.6)	
High line 180-264 V_{AC}	W		-		W
HIGH III IE 180-264VAC	••			2100	••
Overall regulation (setpoint, line, load, temperature)	Vo	-1		+]	%
Ripple and noise					
(20MHz bandwidth, 0.1µF ceramic + 10µF aluminum connected)	Vo			480	mV_{P-P}
Turn-ON overshoot	Vo			+2	%
Turn-ON delay	Т			3	sec
Remote ON/OFF delay time	Т			30	ms
Turn-ON rise time (10 – 90% of V _{out})	Т		1	30	ms
Transient response 50% step [25%-75%] (di/dt=0.1A/	т	-2		2	%Vo
μs, recovery <2ms)		2		2	×0 v 0
Overvoltage protection, latched					
(recovery by recycling off/on via hardware or PMBUs®)	Vo	110		125	%Vo
Output current	lo	0		43.75	A_{DC}
Output external capacitance	С		18000		μF
Current limit	lo	105		110	%FL
24VDC MAIN OUTPUT					
Parameter	Symbol	Min	Тур	Max	Unit
Output Power	W	0	-	100	W
Overall Regulation (setpoint, line, load, temperature)	Vo	-1		+]	%
Ripple and noise					
(20ML Iz handwidth 0 JuE coromic + 10 uE cluminum	Vo			240	mV_{P-P}
(20MHz bandwidth, 0.1µF ceramic + 10µF aluminum connected)					
Turn-ON overshoot	Vo			+2	%
	-				
Turn-ON delav	Т				Sec
	T T			3 30	ms
Turn-ON delay Remote ON/OFF delay time Turn-ON rise time (10 – 90% of V _{out})				30	ms
Remote ON/OFF delay time Turn-ON rise time (10 – 90% of V _{out})	T T			30 10	ms ms
Remote ON/OFF delay time Turn-ON rise time (10 – 90% of V _{out}) Transient response 50% step [25%-75%] (di/dt=0.1A/	Т	-2		30	ms
Remote ON/OFF delay time Turn-ON rise time (10 – 90% of V _{out}) Transient response 50% step [25%-75%] (di/dt=0.1A/ µs, recovery <2ms)	T T	-2		30 10	ms ms
Remote ON/OFF delay time Turn-ON rise time (10 – 90% of V _{out}) Transient response 50% step [25%-75%] (di/dt=0.1A/ µs, recovery <2ms) Overvoltage protection, latched (recovery by recycling off/on via hardware or	T T	-2 110%		30 10	ms ms
	T T T			30 10 +2	ms ms %V ₀

Electrical Specifications

STANDBY OUTPUT					
Parameter	Symbol	Min	Тур	Max	Unit
Set point			5		V _{DC}
Overall regulation (setpoint, line, load, temperature)	Vo	-5		5	%
Ripple and noise (20MHz bandwidth, 0.1µF ceramic+10µF aluminum connected)	Vo			100	mV_{P-P}
Output current	l _o	0		0.5	A _{DC}
Over-voltage Clamp				7	V
Current Limit		110		175	%FL

General Specifications

Parameter	Device	Symbol	Тур	Unit
Calculated Reliability based on Telcordia SR-332 Issue 3: Method 1 Case III (V_{IN} =230 V_{AC} , full load, T_A = 25°C)	All	MTBF	450,000	Hours
Weight	All		3850 135.6	g oz.

Environmental Specifications

Parameter	Device	Specification
Conducted Emissions	All	CISPR11/EN55011, FCC part15 Subpart B, Class B with 6dB margin
Radiated Emissions	All	CISPR11/EN55011, FCC part15 Subpart B, Class B with 3dB margin
ESD	All	EN 61000-4-2, Level 4 Performance Criteria
Electric Fast Transient Common Mode	All	EN 61000-4-4, Level 3
Surge Immunity	All	EN 61000-4-5, Level 3
Conducted Immunity	All	EN 61000-4-6, Level 2
Radiated Immunity	All	EN 61000-4-3, Level 3, IEC 60601-1-2 Table9
Input Voltage Dips	All	EN 61000-4-11, Class 2
Input Harmonics	All	IEC61000-3-2, Class A
Shock and Vibration	All	Per IPC-9592B, Class II

Safety Specifications

Parameter	Device	Specification
Earth continuity	All	25A, max 0.1ohm, duration 3 sec
Safety Standards	All	EN60601-1, IEC 60601-1, ES 60601-1, CAN/CSA-C22.2 No.60601-1:14 approvals

Characteristic Curves

The following figures provide typical characteristics for the CMPE2000AC48 rectifier at 25°C

Figure 1. Rectifier Efficiency versus Output Current

Figure 2. 48V_{DC} output power derating based on input voltage

Figure 3. 48V_{DC} output ripple and noise, full load, V_{IN}=230V_{AC}, 20MHz bandwidth

Figure 4. 24V_{DC} output ripple and noise, full load, V_{IN}=230V_{AC}, 20MHz bandwidth

Figure 5. 5VSB output ripple and noise, full load, V_{IN}=230V_{AC}, 20MHz bandwidth

Characteristic Curves

The following figures provide typical characteristics for the CMPE2000AC48 rectifier at 25°C

Figure 7. Transient response $24V_{DC}$ load step 25% – 75%, V_{IN} = $230V_{AC}$

Figure 8. 24V_{DC} soft start, full load, V_{IN}=230V_{AC}

Figure 9. 48V_{DC} soft start, full load, V_{IN}=230V_{AC}

Figure 10. 24V_{DC} & 48V_{DC} turn on delay time, V_{IN} = 115V_{AC}

Figure 11. 24V $_{\text{DC}}$ & 48V $_{\text{DC}}$ turn on delay time, V $_{\text{IN}}$ = 230V $_{\text{AC}}$

Signal status

All signal status outputs are open-collector type signal that go low when the unit at normal operation condition, the detail status of each signal refer to below Table 1.

Normal operation

	Normal Operation	Out of Spec
	48V/24V in	48V/24V out of
	regulation	regulation
48V	I	Н
PG	Ц	
24V PG	L	Н
	VAC in range	VAC out of range
AC fail	L	Н
	fan good	fan fail
Fan fail	L	Н
	OTP not triggered	OTP triggered
OTP	L	Н

Table 1. Signal output status

Note:

Each signal status output is an open-collector type signal, and the max sink current is 4mA, and max collector voltage is 12V.

LED indicator

Three LEDs for 48V, 24V and AC input, Normal LED green, and off when failed, refer to Table 2.

LED		
	48V/24V in	48V/24V out of
	regulation	regulation
48V LED	Green	dark (off)
24V LED	Green	dark (off)
	Vac in range	Vac out of range
AC LED	Green	dark (off)

Table 2. LED indicator

Enables (remote on/off)

- The PS has three enables: 48V_enable, 24V_enable and Global_enable.
- 48V_enable, (separate on/off) for 48V output, 24V_enable, (separate on/off) for 24V output, and Global_enable, (master on/off) for 48V and 24V outputs.

- The power supply feature a TTL-compatible enable (on/off) control input, each enable signal input has some logic, the power supply outputs turn on when the on/off input goes low, and turn off when the input goes high or floating.
- The specification of enable signals, refer to below Table 3.

Parameter	Min	Тур	Max	Unit
On/Off Signal				
Logic Low (Power Supply ON)				
Input Low Current			0.2	mA
Input Low Voltage			0.5	V
Logic High (Power Supply OFF)				
Input High Current			1.1	mA
Input Voltage	2		5.5	V

Table 3. Enable signal logic spec

Two Dipswitches are added for the 24V and 48V outputs, and if the dipswitch is activated the output will turn on whenever the global enable is active to 'on', the dipswitch location refer to below picture.

1=off, or Disabled			OUTP	υт	
0=on, or	Enabled		0017	01	
Global Enable	48V enable or 48V Dipswitch	24V enable or 24V Dipswitch	48V	24V	5VSB
1	Х	Х	0	0	5V
0	1	1	0	0	5V
0	1	0	0	24V	5V
0	0	1	48V	0	5V
0	0	0	48V	24V	5V

Table 4. Enable and Dipswitch VS Output

Mechanical Outline

- There have 8pcs M5x0.8 type thread holes with thread depth 7.0mm for mounting, which locations as upon drawing showing. Recommended torque: 2.0Nm
- For input and output terminal to assembly cable, which is M4 type screw, Recommended torque: 1.2N

Connector Pin Assignments

Input Connector: DINKLE DT-66-C11W-03; M4, 300V, 40A; Wire UL/CUL: AWG #18~ #8

Output Connector: DINKLE DT-66-C11W-06; M4, 300V, 40A; Wire UL/CUL: AWG #18~ #8; (2POS for 24Vout , 4POS for 48Vout)

Signal Connector (D-Sub 15): TE Connectivity 1734530-3

Ordering Information

Please contact your OmniOn Sales Representative for pricing, availability and optional features (as PMbus information).

PRODUCT	OUTPUT	STANDBY	AIRFLOW	Ordering Code
MPE2000AC48_200AC24	2100W, +48Vout and 100W +24Vout AC Input front-end with 5Vsbaux	5V @0.5A	Standard (from Fan to AC in/DC out)	1600382394A

Change History (excludes grammar & clarifications)

Revision	Date	Description of the change
1.1	12/15/2021	Initial Release
1.2	10/31/2023	Updated as per OmniOn template

OmniOn Power Inc.

601 Shiloh Rd. Plano, TX USA

omnionpower.com

We reserve the right to make technical changes or modify the contents of this document without prior notice. OmniOn Power does not accept any responsibility for errors or lack of information in this document and makes no warranty with respect to and assumes no liability as a result of any use of information in this document. We reserve all rights in this document and in the subject matter and illustrations contained therein. Any reproduction, disclosure to third parties or utilization of its contents – in whole or in parts – is forbidden without prior written consent of OmniOn Power. This document does not convey license to any patent or any intellectual property right. Copyright© 2023 OmniOn Power Inc. All rights reserved.