

Pulsar Plus Controller Family

Document - CC848815341

Notice:

The information, specifications, and procedures in this manual are subject to change without notice. OmniOn Power™ assumes no responsibility for any errors that may appear in this document.

Table Of Contents

Table of Contents	3
Table of Figures	5
Table of Tables	6
Introduction	11
Pulsar Plus Family Controllers	11
Key Features	11
Applications	13
Product Description	15
Overview	15
Configurations	16
Getting Started – Installation, Start-Up, and Basic Configuration	19
Preparation	19
Install and Configure Slot/Door-Mount Controllers	20
Install and Configure Pulsar Plus NE843G Controller	25
Connect To the Controller	28
Initial Startup of the Controller	41
Basic Controller Configuration	42
Web Interface	45
Controller Operation	51
Overview	51
Front Panel Controls and Status Display Pulsar	52
Audible Alarm	55
Voltage Test Jacks	55
Local and Remote Access Ports	56
Front Panel Menu Structure	57
Front Panel Menu Flow	60
Status	64
Control/Operations	68
History	70

Table Of Contents (Continued)

Configuration	71
10/100 Base-T Port	82
Optional Devices and Modules	86
One-Wire Peripheral Devices	86
NE872A Distribution Monitor and Control Module	93
QS871A Distribution Monitor and Control Module	98
ES772A Remote Distribution Module	103
Troubleshooting	113
Specifications	118
Safety	121
Safety Statements	121
Warning Statements and Safety Symbols	122
Precautions	123
Contacts and Warranty	124
Customer Service Contacts	124
Product Warranty	124
Appendix A: Software Upgrades through Craft Port	126
Appendix B: T1.317 Command Language	133
Initializing Controllers	133
T1.317 Command Language	134
Appendix C: Battery Functions	187
Float Mode	187
Slope Thermal Compensation	187
Plant Battery Test	189
Boost Mode	190
Appendix D: Default Configurations	193
Appendix E: Alarms and Relays	208
Alarm Relays	208
Alarms	208
Appendix F: SNMP	214
Appendix G: Secure Protocols	217
Revision	225

Table Of Figures

Figure 1: Infinity NE Power Systems	13
Figure 2: Compact Power Systems	14
Figure 3: General Power System Block Diagram	15
Figure 4: Generic Block Diagram of Pulsar Plus NE843A Controller	16
Figure 5: Front Panel Display	51
Figure 6: front Panel - Pulsar	52
Figure 7: Status Menu	60
Figure 8: Control / Operations and History Menus	61
Figure 9: Configuration Menu (part 1)	62
Figure 10: Configuration Menu (part 2)	63
Figure 11: QS873A Voltage/Thermal Probe (CC109142980 VT-Probe)	86
Figure 12: VT-Probe Connections To Infinity NE	87
Figure 13: ES771A Remote Voltage Monitor Module	89
Figure 14: Four-String System Monitored For Imbalance With One VT Probe Per String	91
Figure 15: Same System Monitored For Imbalance With VT Probe On Every Battery	92
Figure 16: NE872A Remote Distribution Module	94
Figure 17: NE872A ID Jumper Settings	96
Figure 18: NE872A ID Jumper Settings	96
Figure 19: QS871A Remote Distribution Module	98
Figure 20: ES772A Remote Distribution Module	103
Figure 21: Typical Alarm Connections	106
Figure 22: Alarm Connections with Reverse Polarity Protection	107
Figure 23: Reverse Polarity Protected Alarm Connections with an External Battery Disconnect Switch	108
Figure 24: Alarm Connections for DIN Style Load Protectors	
Figure 25: ES772A Mounting Hole Locations	
Figure 26: J5694722 External Distribution	
Figure C-1: Slope Thermal Compensation	
Figure G-1: Security Configuration	
Figure G-2: Network Settings for IPv4 and IPv6	
Figure G-3: Security Problem Screen Using Explorer	
ı iyule U-J. Jeculity FIUDICIII JCIECII USIIIY LAPICIEI	ZIJ

Table Of Figures (Continued)

Figure G-5: HTTPS Connectivity IPv6 Controller Login Screen	220
Figure G-6: SNMP Settings Screen	220
Figure G-7: Sample WinSCP Configuration Screens for Disable	222
Figure G-8: WinSCP Login Screen	222
Figure G-9: WinSCP Security Key Warning Screen	222
Figure G-10: WinSCP SFTP Connection	223
Figure G-11: PuTTY Security Key Warning Screen	223
Figure G-12: PuTTY SSH Login Example Screen	224
Table Of Tables	
Table 1 Pulsar Plus Controller Family Product Options	18
Table 2 Controller Standard Defaults Door Mounted	23
Table 3 Controller Standard Defaults NE843G	26
Table 4 Auxiliary Input Connector	3
Table 5 Output Alarm Connector	32
Table 6 Local RS-232 Serial Port Signals	35
Table 7 Power And Sense Connector	36
Table 8 Status LEDs - Pulsar	54
Table 9 Rectifier Status	64
Table 10 Converter Status	64
Table 11 Batteries Status	65
Table 12 Shunt Currents Status	65
Table 13 Disconnect States Status	65
Table 14 Alarm Thresholds Status	66
Table 15 Enabled/Disabled Info Status	66
Table 16 Network Settings Status	67
Table 17 System Info Status	68
Table 18 Control/Operations	68
Table 19 History	70
Table 20 Float Settings Configuration	7
Table 21 Shunt Monitors Configuration	72
Table 22 Shunt Type Configuration	73

Table Of Tables (Continued)

Table 23 Rectifiers Configuration	75
Table 24 Batteries Configuration	75
Table 25 Contactors Configuration	76
Table 26 Disconnects Configuration	77
Table 27 Converters Configuration	78
Table 28 Boost Configuration	79
Table 29 System Settings Configuration	81
Table 30 Communication Ports Configuration	81
Table 31 NE872 J1 Signal Description	97
Table 32 NE872 J2 Signal Description	97
Table 33 NE872 TB1 Signal Description	98
Table 34 NE872 J100 and J101 Signal Description	98
Table 35 QS871 J1 Signal Description	101
Table 36 QS871 J2 Signal Description	101
Table 37 QS871 J3 Signal Description	102
Table 38 QS871 J100 and J101 Signal Description	102
Table 39 ES772 Connector J1 Pinout Definitions	106
Table 40 ES772 Connector J3 Pin Definitions	106
Table 41 Auxiliary Port Connector Signals	109
Table 42 Pulsar Power System Troubleshooting	113
Table 43 Specifications	118
Table B-1 T1.317 Power System Related Commands (PS)	135
Table B-2 T1.317 User Login Related commands (USR)	138
Table B-3 T1.317 AC Distribution Related Commands (ACD)	138
Table B-4 T1.317 DC Plant Related Commands (DC)	139
Table B-5 T1.317 Alarms With Two Thresholds Related Command (DTH)	140
Table B-6 T1.317 Alarms With One Threshold Related Command (STH)(STH)	140
Table B-7 T1.317 Alarms With No Threshold Related Command (NTH)	141
Table B-8 T1.317 Rectifier Management Related Commands (GM)	147
Table B-9 T1.317 Rectifiers Related Commands (G)	148
Table B-10 T1.317 ECO Priority Related Commands (ECO)	149
Table B-11 T1.317 Generator Related Commands (GN)	149

Table Of Tables (Continued)

Table B-12 T1.317 Converter Plant Related Commands (CP)	150
Table B-13 T1.317 DC Converter Related Commands (C)	151
Table B-14 T1.317 Inverter Plant Related Commands (IP)	151
Table B-15 T1.317 Inverter Related Commands (N)	152
Table B-16 T1.317 Ringer Plant Related Commands (RP)	153
Table B-17 T1.317 Ringer Chassis Related Commands (RC)	153
Table B-18 T1.317 Battery Reverse Management Related Commands (BR)	154
Table B-19 T1.317 Battery Type Definition Related Commands (BT)	155
Table B-20 T1.317 Battery String Related Commands (B)	155
Table B-21 T1.317 Boost Management Related Commands (BS)	156
Table B-22 T1.317 Disconnect Contactor Control Related Commands (CN)	156
Table B-23 T1.317 Slope Thermal Compensation Related Commands (SC)	157
Table B-24 T1.317 Mid-String Voltage Related Commands (MS)	158
Table B-25 T1.317 Distribution Current Monitor Related Commands (DCM)	158
Table B-26 T1.317 Distribution Contactor Interface Related Commands (DCN)	158
Table B-27 T1.317 Input Management Related Commands (IN)	159
Table B-28 T1.317 Call-Out Manager Related Commands (CM)	160
Table B-29 T1.317 Call-Out Phone Number Related Commands (P)	160
Table B-30 T1.317 Call-Out Email Address Related Commands (E)	160
Table B-31 T1.317 Periodic Call-Out Related Commands (PO)	160
Table B-32 T1.317 Local RS-232 Port Related commands (LP)	161
Table B-33 T1.317 Modem Related Commands (MP)	161
Table B-34 T1.317 Call-Back Security Related Commands (CB)	161
Table B-35 T1.317 Network Settings Related Commands (NET)	162
Table B-36 T1.317 SNMP Destination Related Commands (S)	163
Table B-37 T1.317 SNMP Community Strings Commands (CS)	163
Table B-38 T1.317 MODBus Slave Related Commands (MOD)	163
Table B-39 T1.317 Remote Polled Slave MODBus Devices Commands (MOD-D)	164
Table B-40 T1.317 Polled MODBus Registers Related Commands (MOD-R)	164
Table B-41 T1.317 Alarm Test Related Commands (AT)	165
Table B-42 T1.317 Alarm Cut-Off Related Commands (ACO)	165
Table B-43 T1.317 User Defined Events Related Commands (UDE)(UDE)	166

Table Of Tables (Continued)

Table B-44 T1.317 Derived Channels Related Commands (DR)	166
Table B-45 T1.317 Trend Related Commands (DCT/CPT)	166
Table B-46 T1.317 TL1 Manager Related Commands (TL1-M)	167
Table B-47 T1.317 TL1 Object Related Commands (TL1-O)	167
Table B-48 T1.317 Auxiliary Network Settings Related Commands (NET-2)	167
Table B-49 T1.317 Bulk Data Report Related Commands (RPT)	168
Table B-50 T1.317 Distribution Bay Related Commands (DB)	168
Table B-51 T1.317 Distribution Panel Related Commands (DP)	169
Table B-52 T1.317 Power Express Group Related Commands (PEG)	169
Table B-53 T1.317 Power Express Shelf Related Commands (PES)	170
Table B-54 T1.317 Power Express Module Related Commands (PEM)	170
Table B-55 T1.317 Power Express Circuit Related Commands (PEC)	171
Table B-56 T1.317 PowerShift Module Related Commands (RHM)	171
Table B-57 T1.317 PowerShift Circuit Related Commands (RHC)	172
Table B-58 T1.317 PowerShift Boost Related Commands (RHB)	173
Table B-59 T1.317 PowerShift Translator Related Commands (RHT)	174
Table B-60 T1.317 PowerShift Packet Related Commands (RHO)	174
Table B-61 T1.317 Panel Interface Card Related Commands (PIC)	176
Table B-62 T1.317 Panel Current Monitor Related Commands (PCM)	176
Table B-63 T1.317 Panel Voltage Monitor Related Commands (PVM)	176
Table B-64 T1.317 Panel Temperature Monitor Related Commands (PTM)	177
Table B-65 T1.317 Battery Module Interface Card Related Commands (BMIC)	177
Table C-1 Supported Battery Types	192
Table D-1 Standard Configuration Item Defaults	194
Table D-2 24V Battery Related Items Defaults	206
Table D-3 48V Battery Related Items Defaults	207

This page intentionally left blank

Introduction

Pulsar Plus Family Controllers

Overview

This manual covers the Pulsar Plus and Phoenix controllers.

These controllers were developed for both indoor and outdoor cabinet power applications.

Modular hardware and software design of the controllers allow for easy customization for specific applications.

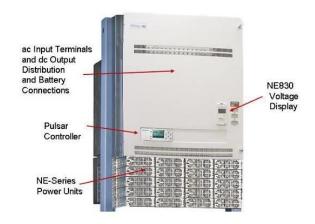
Controllers provide control and alarm monitoring functions over several communication interfaces including a standard RS-485 digital serial interface that interconnects system rectifiers, converters, and other peripherals. Compatible rectifiers include NE, CP, NP, EP, IP, and 59X series.

Local and remote access is provided.

Features are factory configured to industry standard defaults to minimize the setup process in the field. Customer specified factory default configuration is also available

Key Features

- Modular design allows different packaging alternatives: a single power slot positions of the rectifier shelf, mounting to a cabinet or distribution door, and 1U rack-mount option
- Easily field replaceable
- Standard or customer specific factory defaults supported
 - Support of more than one factory default
- Supports dual voltage plants, with rectifiers and converters
 - Auto-sensing dual voltage (both voltages and both currents displayed on front panel)
- Power Unit control and management
 - Centralized settings for converter and rectifier output set-point voltages.
 - Up to 60 NE power modules (Rectifiers and converters)
 - Up to 32 CP rectifiers
- Extensive Battery Management features
 - Management of four independent Low Voltage Disconnects (LVDs)
 - Up to eight contactors can be assigned to contactor interface IDs
 - Load disconnects operated by low voltage, low voltage and/or time delay, remote command, or external control signal
 - Battery disconnect operated by voltage threshold, voltage threshold and/or time, remote command, high battery temperature, or Emergency Power Off (EPO) signal
 - Battery recharge current limit feature
 - Low and high temperature voltage compensation
 - Independent adjustable slopes
 - Step function


- Manual and automatic Boost charging
- Manual, remote test, and periodic discharge test capability
 - Reserve time calculations with configurable threshold
 - Manual time threshold for pass/fail criteria
- 1-Wire monitoring
- Up to six ES771 Mid-string voltage monitors (configurable mid-string imbalance alarm)
- Up to sixteen battery thermal probes (configurable temperature alarm)
- Alarm management of 24V and 48V DC distribution
 - User defined thresholds
- Front accessible 64x128 LCD with control pad and intuitive menu navigation system.
 - Available front panel PIN (password) access feature
 - Alarm severity sensitive display back-light
 - Voltage Test Jacks for both DC busses
 - Three separate configurable assignable LED indicators
- Built-in audible alarm and test feature
- 10 configurable alarm outputs with manual alarm test features
- 10 configurable binary inputs
- Integrated 10/100Base-T Ethernet for local port or for Network remote monitoring
 - SNMP, TCP/IP, SMTP, HTTP, Telnet, FTP, and utilizes Dynamic Host Configuration Protocol (DHCP)
 - Compatible with standard browsers
- Event history log
- Rectifier Group Standby/ Hold-off mapping (generator/AC load minimization)

Applications

The Pulsar Plus controller family has applications in Infinity NE, Infinity P2, the Compact Power (CP) Line, EPS, and previous generation power systems. Following are product depictions utilizing the various configurations of the controller. These applications utilize the NE843A slot controller and the NE843C, NE843E, and NE843P door/panel mounted controllers. Consult appropriate system manuals, technical field support or your local sales representative for more details on these or other power systems.

Infinity NE Systems

Infinity NE-M Selectable Power System (Pulsar Plus NE843E)

Infinity NE-S Power System (Pulsar Plus NE843E)

Infinity NE-D Distributed Power System (Pulsar Plus NE843E)

Infinity NE - B Bulk Power System (Pulsar Plus NE843A)

Figure 1: Infinity NE Power Systems

OmniOn Power is a trademark of OmniOn Power Inc. All other trademarks belong to their respective owners.

The Pulsar Plus NE843A slot controller is inserted into the left-most position of the rectifier shelf. This position in the shelf allows access to all I/O. The panel/door-mounted Pulsar Plus NE843C controllers are typically installed at the factory, but can also be ordered separately for spares or integrated into custom systems.

The following pictures depict the Pulsar Plus controller in the EPS and Compact Power systems. These include two slot controllers, EP843D and the CP843A, and the 1U rack-mount controller applicable in 19" and 23" frames. The Pulsar Plus controllers provide a front panel DB9 or RJ45 Craft port for local terminal access using RS-232. A front panel position is reserved for a second RJ45 Ethernet connection in the near future.

EPS2400 Power System (Pulsar Plus EP843D)

Compact Power Shelf (Pulsar Plus NE843G)

Compact Power Shelf (Pulsar Plus CP843A)

Figure 2: Compact Power Systems

Product Description

Overview

Introduction

OmniOn PowerTM System rectifiers accept alternating current (ac) power and rectify it to produce direct current (dc) power for powering external equipment (loads). Converters accept the dc output from rectifiers or other sources and convert it to various regulated output dc levels also needed for powering external equipment (loads). Batteries, generators, and UPS are used to provide backup power when ac is lost. When batteries are used, they are connected in parallel for additional capacity along with the rectifier outputs through appropriate breakers and contactor disconnects. DC power is distributed through distribution panels with various protectors and contactors. These rectifiers, converters, backup systems, and distribution are all managed by the controller. The following figure depicts a generic representation of the system controller and its relationship in a power system. The components depicted and their associated features as they relate to the system controller will be discussed in this manual.

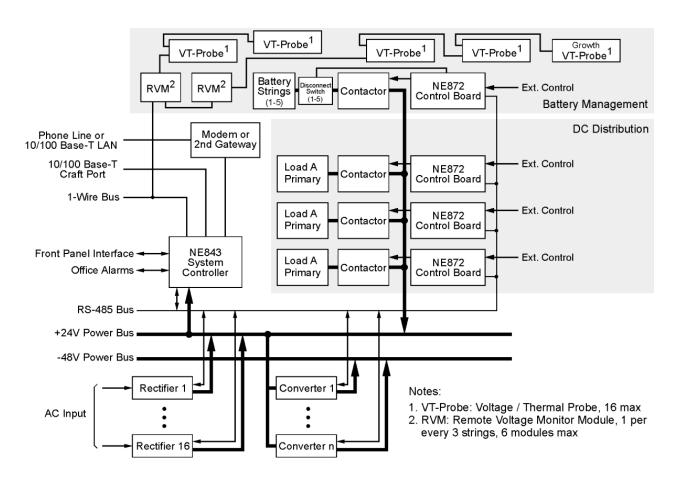


Figure 3: General Power System Block Diagram

Configurations

The main "843" microprocessor board comprises the Pulsar Plus family controllers. These controllers are designed to fit a variety of systems and applications. Input and output wiring is connectorized to allow swift disconnect and attachment to and from the unit. There are several different configuration options for the controllers. The "843" board is designed to fit in NE and CP power slots can be quickly installed or removed entirely from a power position with the use of an integrated latch. Controllers can also be ordered as a direct door or panel mount controller. Within these different physical configurations there are available integrated options that include items such as a modem or a second Ethernet port. For slot controllers, these options must be ordered and pre-installed at the factory. Options for door/panel mount controllers can be added in the field.

The following figure is a block diagram of the basic components of the Pulsar Plus NE843A slot controller. Controller options that mount directly to a door or panel do not require the small internal connection board used to interface with the backplane. As an example, the NE843_CONA shown below is the interconnect board used in the Pulsar Plus NE843A slot controller for interfacing to the NE shelf's backplane.

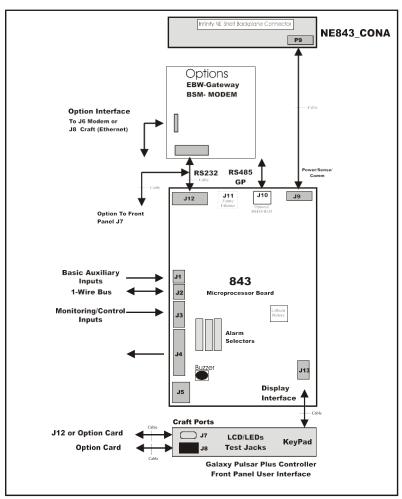


Figure 4: Generic Block Diagram of Pulsar Plus NE843A
Controller

A listing of the controller options is defined in this section. A brief description is provided for each configuration. These are the basic configurations that are available from the factory. Always consult the controller ordering guide (PULSAR-AD) and respective sales contacts to ensure the most complete and up to date listing. The naming convention used for the Pulsar Plus product family and its options are factory orderable is:

ZZ 843 A D - XXX - YYY

Where:

ZZ	This identifies the product family of Pulsar Plus 843 controller. (Valid IDs are NE, CP, and EP)
А	This identifies the controller form factor option (A=Shelf/Slot packaging, C=NE Millennium Door-Mount, D= DTAG Front Access, E=Standard Door-Mount, G=1U 19"/23" Frame,
D	This identifies a controller of the same form factor but manufactured with a different component configuration or board options (Blank = Standard)
xxx	These characters identify which Craft port option is installed (RJC=Cisco RJ45 serial craft port with no board options, RJ5= Standard TIA RJ45 with no board options installed, Blank= DB9 serial craft port no board options installed)
YYY	This identifies a customer or application specific software configuration version of the controller (Blank = Standard). These codes are specifically assigned to a customer or an application that defaults can clearly be predefined to minimize field configuration. Consult appropriate sales personnel for additional information.

The following table identifies the configurations presently available or near availability for the controller product family. The slot controllers provide input/output connections at the side of the chassis. An RJ11 port for an optional modem connection is also provided. If the modem function is not included in the configuration, this port will be covered. The NE843A also provides access to an RJ45 receptacle for a additional Ethernet connection in the future as well as a standard DB-9 interface for a serial connection. Depending on the controller configuration and product availability, these ports may or may not be covered and made unavailable. The information included in the "Description" column provides a brief description about the availability of these ports for each particular configuration.

Configuration ²	Ordering Code ¹	Description
NE843A NE843A_S	CC109128402 150042935	 NE Slot controller with no options Front panel has: RS-232 available (not covered) RJ45 not present (covered) RJ11 for phone on side not present (covered)
NE843A_M3	CC109140522	NE Slot controller with BSM3 internal modem Front panel has: RS-232 available (not covered) RJ45 not present (covered) RJ11 for phone on side available (not covered) BSM3 internally powered from NE843A
CP843A	CC109129895	 CP Slot controller with no options Front panel has no I/O. RS-232 craft port made available on the side, No second RJ45 (dual Ethernet) RJ11 for phone on side not present (covered)
NE843E NE843E_S	CC109142056 150042937	Door/panel mount controller with no options • Front panel has RS-232 available through DB9 (not covered); Second RJ45 not present (covered) • RJ11 for phone on side not present (covered)
EP843D	CC109133427	DTAG (PSU4815) system controller - Front Access, 300mm • Front panel has RS-232 available through DB9 (not covered); Second RJ45 notpresent (covered) • Front Access to all I/O
NE843G NE843G_S	CC109139358 150042938	 19" 1U Rack-mount controller - DB-9 Front panel has RS-232 available through DB-9 (not covered); Second RJ45 not present (covered) Rear Access to all I/O
NE843G2_S	150047240	 19" 1U Rack-mount controller - DB-9 Front panel has RS-232 available through RJ45 connector (not covered); Second RJ45 not present (covered) Front Access to all I/O
NE843G_RJC	CC109142064	 19" 1U Rack-mount controller - RJ45 Front panel has RS-232 available through RJ45 connector (not covered); Second RJ45 not present (covered) Rear Access to all I/O

Table 1 Pulsar Plus Controller Family Product Options

¹ Some options may still be under development. Please consult sales and technical field support for further inquiry. ² S suffix denotes controllers with the same features but updated to the current "Secure" hardware & software features.

Getting Started – Installation, Start-Up, and Basic Configuration

Warning	Review and follow the entire Safety Section before beginning the installation process. Observe all warnings and labels on the equipment. Install, service, and operate this equipment only by professional, skilled and qualified personnel who have the necessary knowledge and practical experience with electrical equipment and who understand the hazards that can arise when working on this type of equipment. Hazardous energy and voltages may be present in the system, system components, and on the interface cables that may shock or cause serious injury or death if safety precautions are ignored.
Caution	All tools and test equipment must be insulated in an approved manner. Proper ESD protection is required in order to prevent ESD damage to the equipment.

Preparation

This section outlines the sequence for installing and quickly configuring the slot-controllers into a power system like the Infinity NE-S as well as connecting up the NE843G rack-mount controller to a Compact Power system. Infinity NE-M, NE-D, Infinity P2 and other similar systems shipped from the factory utilize the NE843C, NE843E, and NE843P door/panel-mounted controllers which are typically installed at the factory. Installation of these units will not be discussed in detail. Information will be provided on the input and output of the controllers to help aid in customization or replacement in the field.

Installation Tools

You will need the following tools to install and test the System:

- Wire cutters and strippers
- Heat shrink gun
- 5/16-inch (8 mm) hex driver
- 1/4-inch hex driver
- Digital meter with an accuracy of ±0.02%
- Screw drivers (flat-blade and Phillips)
- ESD wrist strap
- Assortment of socket wrenches and drivers
- Test cable
- Protective canvas
- Insulating rubber mat
- Windows-based personal computer laptop (PC) and cable to connect the PC communications port to the local port of the controller OR a CAT5 LAN cable.

Wiring Guidelines

• All electrical connections must be made using the proper crimping tools and dies and must be torqued to standard or specified values.

Packaging

- All packages must be opened with a box cutter with the blade minimally exposed so that only the sealing tape is cut.
- Save all packaging material until the system has been powered up and all parts are operating within specifications.

 The shipping package may be used to return defective parts.

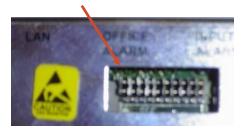
Install and Configure Slot/Door-Mount Controllers

The controller is available factory installed into a door/panel of a power system, supplied as a removable slot controller, or provided as 1U frame mount controller. All these controllers utilize the same main microprocessor board. All functions, inputs, and outputs described are applicable to all controller configurations. The differences in the controllers are due the nuances of the front panel and physical packaging. The NE843A, CP843A, and EP843D Slot controllers are very similar. The NE843E, will be described. Information for the NE843G will also be provided since its package is the most different.

Before power is applied, some basic configuration may be required that is applicable to all configurations.

nstall and C	onfigure Slot/Door-Mount Controllers	
Step		Action
	Connect f	or ESD Prevention
	NE843E Attach an ESD wrist strap or equivalent to the ESD grounding connector on right hand side of the inside of the frame in the medium system. Visible after door is opened.	NE843A/CP843A/EP843D Attach an ESD wrist strap or equivalent to the ESD grounding connector inside the distribution panel in front of the battery landings or another convenient location.
1	ESD Grounding Connector (Medium Systems)	ESD Jack
2	Configuring Individual Alarm Output Contact The factory default configuration for all alarm of 4 otherwise continue.	Type- "Close" on or "Open" on alarm utputs is "Open" on alarm. If this acceptable go to Step
2	Locate configuration jumpers for alarm relays of door-mounted controller. Each of the 10 output alarm jumpers is visible.	Locate configuration jumpers for alarm relays on slot-mounted controller. Lift the sliding cover onthe top to access each of the 10 output alarm jumpers.

Step Action


Configuring Individual Alarm Output Contact Type— "Close" on or "Open" on alarm

The factory default configuration for all alarm outputs is "Open" on alarm. If this acceptable go to Step 4 otherwise continue.

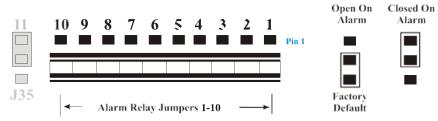
Locate configuration jumpers for alarm relays on door-mounted controller. Each of the 10 output alarm jumpers is visible.

Alarm Relay Jumpers

Locate configuration jumpers for alarm relays on slot-mounted controller. Lift the sliding cover on the top to access each of the 10 output alarm jumpers.

If an NE-872 Contactor Control Module is mounted on back of a Door Mounted Controller, remove it to gain access to the jumpers. After removing the mounting screws carefully position the NE-872 so that it is not in contact with electrically live components and is supported by the cables connected to it. Otherwise continue.

NE-872 Contactor Control Module

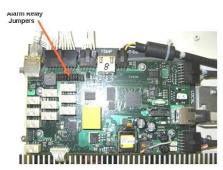

Step

3

Action

Configure alarm relays to "Open" or "Close" on alarm as required:

Jumpers 1-10 select the contact type provided at alarm connector J4 for each of the ten alarms. Carefully move and verify each of respective configuration jumpers to achieve the desired contact type: "Open On Alarm" or "Closed On Alarm" position. Use of an insulated tool is suggested. Return the sliding cover on the slot-controller when configuration is complete. Note: the same control board is utilized in all controller applications. However, the appearance of the jumpers may seem different because of its orientation in the different packages. Use the following along with labeling on the controller to assist in setting the jumpers.



Slot Controllers - NE843A/ CP843A/ ED843D

1 2 3 4 5 6 7 8 9 10 11 Factory

Alarm Relay Jumpers 1-10 Default

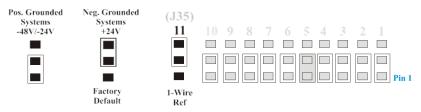
Door Mount Controllers - NE843E

Microprocessor Board - Integrated into all controllers

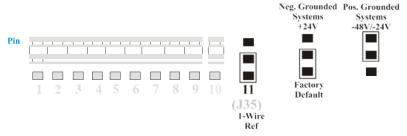
Each jumper corresponds to one alarm relay and each relay output can be configured independently. The following table contains the alarms along with the factory default alarm assignments to user relays R1-R7. Utilize the web or EasyView interface to reassign any of the alarm outputs to specific alarm events or to change the severity of the alarms.

Otherwise go to step 5.

Jumper Number	Signal Name	Controller Standard Defaults Door Mounted
1	PCR	Power Critical Alarm
2	РМЈ	Power Major Alarm
3	PMN	Power Minor Alarm
4	R1	Battery on Discharge (BD)
5	R2	Very Low Voltage (VLV)
6	R3	Fuse Alarm (FAJ1/2/FAN1/2)
7	R4	AC Fail (ACF)
8	R5	Rectifier/Converter Fail (RFA/CFA)
9	R6	Multiple Fail - Rectifier/Converter/AC (MACF/MRFA/MCFA)
10	R7	High Voltage - Rectifier/Converter (HVA/HFV/CHVA/CHFV
	Ti	ble 2 Controller Standard Defaults Door Mounted



Step Action


Configure the 1-Wire serial bus reference:

The ES771 modules must be referenced to the most negative potential of the DC bus. This reference is achieved by the proper setting of Jumper 11 (board reference J35) that is located next to the alarm relay configuration jumpers. The jumper is set in the factory for Positive Grounded systems (-48V) unless the controller is shipped with an assembled system that has a pre-determined primary output bus. An insulated tool must be used to set the jumpers.

For systems with Positive Grounded batteries (-48V/-24V), move 1-Wire Reference jumper 11 (J35) to the Positive Grounded position. For systems with Negative Grounded batteries (+24V), move jumper 11 (J35) to the Negative Grounded position as shown: Again, the appearance of the jumpers may seem different when the controller is a slot-controller or a door-mount controller because of the orientation of the circuit board.

Slot Controllers - NE843A/CP843A/ED843D

Door Mount Controllers - NE843C/NE843E/NE843P

Make sure the jumper cover is returned in slot-mount controllers.

Securing The NE-872 Contactor Control Module

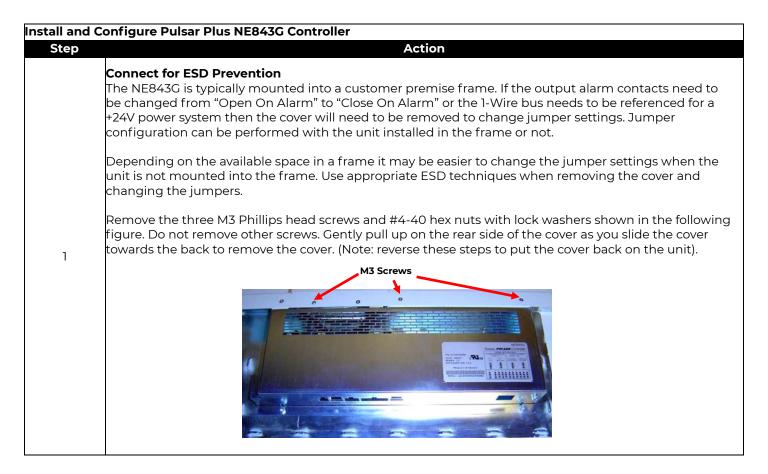
If the NE-872 Contactor Control Module unit was removed from the back of the door mounted controller replace it and tighten its mounting screws.

Securing the Slot-Mounted Controller

For NE843C/NE843E based systems go to next section on connecting the controller. The following is for the NE843A/CP843A/EP843D slot-controllers.

Place the NE843A/CP843A slot-mounted Controllers into a left-most power. The EP843D goes into the right-most power slot.

Open the latch on right-hand side of the front panel by pushing down on the edge of the "blue" latch tab.


5

Install and	d Configure Slot/Door-Mount Controllers	
Step	Action	
6	Push the controller firmly into the shelf until seated. Attach or reattach all cable connections to the appropriate connections located on the side of the controller.	
7	Close the latch. The controller is now installed.	

Install and Configure Pulsar Plus NE843G Controller

Although the NE843G frame-mount controller is very similar to the NE843A, CP843A, and EP843D Slot controllers and NE843E door/panel-mount controllers a separate section is provided since its packaging is the most different. However, the basic steps are very similar.

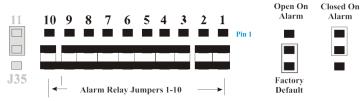
Install and Configure Pulsar Plus NE843G Controller

Step Action

Frame Mounting

The NE843G is designed to flush-fit into standard 19" frame rails. Extension brackets are available to mount the unit into standard 23" frame rails. Use the #12 paint piercing ground washers (12NWGRO/T2) along with the six 12-24 self-tapping screws (CC408577571) to mount the NE843G to the frame. Use at least two screws per side. The controller is typically mounted over the top of a J85480S1 L1 or L4 rectifier shelf but can also be mounted below.

2


Note: Return to this section if changing the jumper settings with the unit not installed in the frame.

- Configure Individual Alarm Output Contact Type- "Close" on or "Open" on alarm
- The factory default configuration for all alarm outputs is "Open" on alarm. If this acceptable go to Step 8. Otherwise continue.
- 4 ||f the controller is slot mounted remove it to gain access to the jumpers. Otherwise continue.

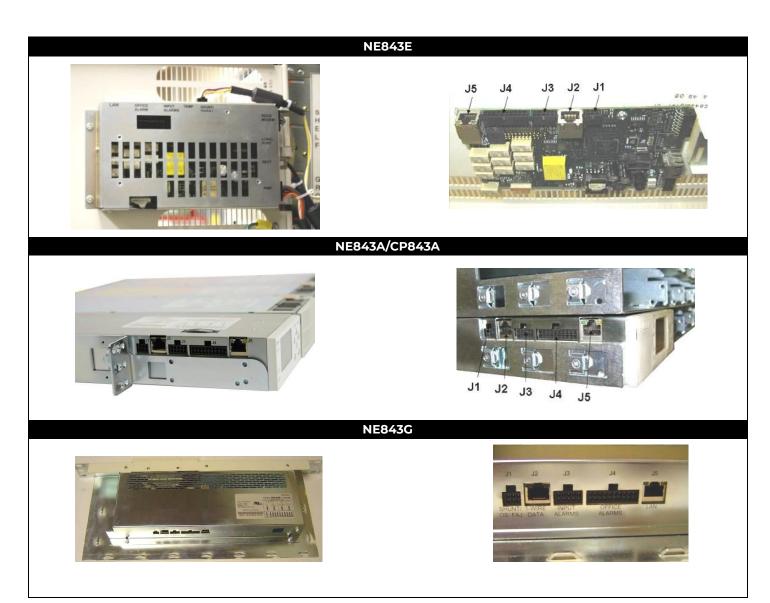
Configure alarm relays to "Open" or "Close" on alarm as required:

Jumpers 1-10 select the contact type to provide at alarm connector J4 of each respective Form- C output for each alarm. Carefully move each of respective configuration jumpers to the desired contact type: "Open On Alarm" or "Closed On Alarm" position as required per site instructions. Use of an insulated tool is suggested. Return the cover on the controller if finished configuring alarm relays and 1-Wire reference adjustment is not required. Note: the same control board is utilized in all controller applications. However, the appearance of the jumpers may seem different because of its orientation in the different packages. Use the following along with labeling on the controller to assist in setting the jumpers.

Frame-Mount Controller - NE843G

Each jumper corresponds to one output alarm relay contact that can be independently configured. The alarm table shown in Step 3 previously is also applicable for this controller but repeated below for convenience. Utilize the web or EasyView interface to change any of the alarm user relay alarm assignments if needed.

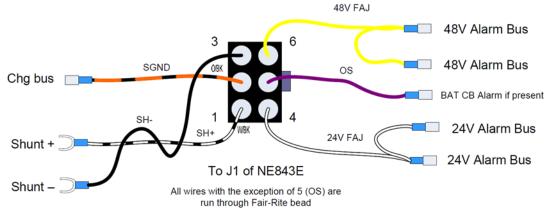
Jumper Number	Signal Name	Table 3 Controller Standard Defaults NE843G
1	PCR	Power Critical Alarm severity
2	PMJ	Power Major Alarm severity
3	PMN	Power Minor Alarm severity
4	R1	Battery on Discharge alarm (BD)
5	R2	Very Low Voltage (VLV)
6	R3	Fuse Alarm (FAJ1/2/FAN1/2)
7	R4	AC Fail (ACF)
8	R5	Rectifier / Converter Fail (RFA/CFA)
9	R6	Multiple Fail - Rectifier/Converter/AC (MACF/MRFA/MCFA)
10	R7	High Voltage - Rectifier/Converter (HVA/HFV/CHVA/CHFV)


Table 3 Controller Standard Defaults NE843G

Install and Configure Pulsar Plus NE843G Controller Step Action 6 If your system **using optional ES771 Mid-String Voltage Modules** continue. Otherwise go to step 8. Configure The 1-Wire Serial Bus Reference: The ES771 modules must be referenced to the most negative potential of the DC bus. This reference is achieved by the proper setting of Jumper 11 (board reference J35) that is located next to the alarm relay configuration jumpers. The jumper is set in the factory for Positive Grounded systems (-48V) unless the controller is shipped with an assembled system that has a pre-determined primary output bus. An insulated tool must be used to set the jumpers. For systems with Positive Grounded batteries (-48V/-24V), move 1-Wire Reference jumper 11 (J35) to the Positive Grounded position. For systems with Negative Grounded batteries (+24V), move jumper 11 (J35) to the Negative Grounded position as shown: Again, the appearance of the jumpers may seem different when the controller is a frame-mount controller because of the orientation of the circuit board. 7 Frame-Mount Controller - NE843G Neg. Grounded Pos. Grounded (J35)Systems 11 48V/-24V +24V Factory 1-Wire Ref Return the cover to the unit. Securing The Frame-Mounted Controller 8 If the unit was not mounted into the frame see Step 2. Otherwise this portion is complete.

Connections to the controller are made through appropriate cable assemblies either directly to the main board or automatically for direct backplane interconnects. The controller is designed with individual connectors for outputs, inputs, communication, and other specific system related items. Primary system interconnects are oriented at the top and right side edges of the NE843E door-mounted units, on the left side of the unit's NE843A/CP843A slot-mounted controllers, at the rear of the NE843G, and at the front of the EP843D. The following information is valid for all configurations since the same main microprocessor board is utilized in the different controller packages. Slight differences due to packaging will be noted.

Many systems are shipped with the controller pre-wired in the factory. The following steps provides a brief description of how and what to connect to the controller if these connections are to be made in the field. Use only those that apply to the system configuration.



Step Action

Plant Interface Connector

J1 is a 6-pin connector provided for interfacing inputs required for basic plant operation in specific system configurations. These inputs include a single plant shunt, (2) distribution alarms, and open battery string alarm. J1 connections are typically made in the factory with a specific wire harness for a given system. Following is a brief description of the inputs.

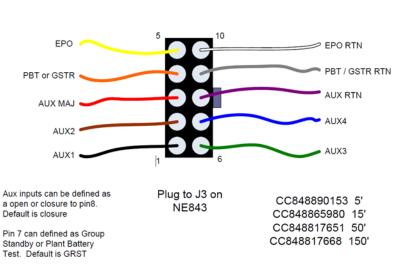
Pin	Signal Name	Description
1	Shunt+	Shunt + is the more positive lead from a system battery or load shunt. For battery shunts, this is the most positive lead of shunt during a discharge. The shunt may reside in the grounded or nongrounded side of the DC bus (±24V/-48V) as long as the Shunt Reference lead is connected correctly. This lead must comply with Class II wiring standards.
2	Shunt Reference	This signal is used to reference the shunt analog measurement circuits to either the battery or ground side of a system. The reference must be attached to the same potential or side that the monitored shunt resides. This lead must comply with Class II wiring standards.
3	Shunt-	Shunt - is the more negative lead from a system battery or load shunt. For battery shunts, this is the most negative lead of shunt during a discharge. The shunt may reside in the grounded or nongrounded side of the DC bus (±24V/-48V). This lead must comply with class II wiring.
4	Fuse Alarm Major - 24V	FAJI is the input monitor for distribution that accepts a contact to Battery for ±24V DC systems as an alarm. Factory default for FAJI is to alarm on application of DC bus voltage. Can be reconfigured as needed through the web interface.
5	Open String	OS1 is the input monitor that accepts a contact to Battery for ±24V/-48V DC systems to identify an open battery string. Factory default for OS1 is to alarm on application of DC bus voltage. Can be reconfigured as needed through the web interface.
6	Fuse Alarm Major -48V	FAJ2 is the input monitor for that accepts a contact to Battery for -48V DC systems as an alarm. Factory default for FAJ2 is to alarm on application of DC bus voltage. Can be reconfigured as needed through the web interface.

Step Action

One-Wire Battery Peripheral Connector

J2 is a standard shielded RJ-45 receptacle provided for making connections to "1-Wire" devices such as QS873 VT-Probes (up to 16) and ES771A Remote Mid-string Voltage Monitors (up to six). Standard cable assemblies have been designed and must be used for applications involving the QS873 VT-Probes or ES771 Remote Midstring Voltage monitors. These cables provide simple plug-n-play from the controller to a QS873A probe, from the controller to an ES771A, and between QS873A probes and ES771 modules. Consult the section on "1-Wire" peripherals for further information. Following are the present pin assignments for J2.

2


Pin#	Signal Name	Description
1	reserved	
2	reserved	
3	SIG_RTN	Protected signal return for 1-wire
4	reserved	
5	1-Wire	1-wire communication signal
6	+5V	Protected +5V Power utilized by ES771 modules
7	reserved	
8	reserved	

Note: J2 does not contain the RS485 rectifier control bus

Auxiliary Input Connector

33 is 10-pin right angle header that provides a separate connection for auxiliary inputs. Standard color coded cable assemblies are available. Part numbers for the 50' and 150' 24AWG input cables are CC848817651 and CC848817668, respectively. Contact technical field support for additional cable options or needs. Utilize the appropriate cable to obtain the desired connections to the inputs shown below.

Auxiliary Input

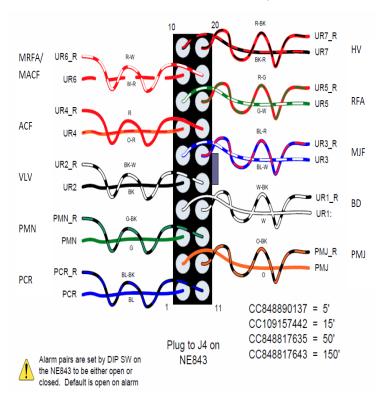
Step Action

Pin # Wire Color	Signal Name	Description
1 (BK)	Aux Input 1 (Aux1)	Auxiliary input to monitor a contact closure or open to its respective return on pin 8, Auxiliary Input Return. See Appendix E for alarm assignments
2 (BR)	Aux Input 2 (Aux2)	Auxiliary input to monitor a contact closure or open to its respective return on pin 8, Auxiliary Input Return. See Appendix E for alarm assignments
3 (R)	Aux Power Major Input (AMJ)	Auxiliary input to monitor a contact closure to the non- grounded side of a dc bus (±24V/-48V) to create the standard Auxiliary Power Major alarm. See Appendix E for alarm assignments
4 (O)		Dedicated input to be monitored for a contact closure to its respective return on pin 9. Used for Plant Battery Test and Group Standby Feature. Factory default as the Group Standby feature upon a contact closure.
5 (Y)	Emergency Power Off (EPO)	Dedicated EPO input to be monitored for a contact closure to its respective return on pin 10, Emergency Power Off Return.
6 (G)		Auxiliary input to monitor a contact closure or open to its respective return on pin 8. See Appendix E for alarm assignments.
7 (BL)	Aux Input 4 (Aux4)	Auxiliary input to monitor a contact closure or open to its respective return on pin 8. See Appendix E for alarm assignments.
8 (V)	Aux Input Return (Aux_R)	Return for Auxiliary Inputs 1-4.
9 (S)	Plant Battery Test/ Group Standby (TR) Ret.(GSTR_R)	Return for Plant Battery Test and Group Standby.
10 (W)	Emergency Power Off Ret. (EPO_R)	Return for EPO input.

Table 4 Auxiliary Input Connector

Output Alarm Connector

4


All controller customer output alarm contacts are available at the **J4** output connector interface. J4 is a 20-pin right angle header with latching capability. Standard color coded alarm cable assemblies are available. Part numbers for the 50' and 150' 24AWG solid twisted pair output cables are CC848817635 and CC848817643, respectively. Contact technical field support for additional cable options. Utilize the appropriate cable to obtain the desired connections to the outputs shown below.

Step

Action Output Alarm Connector

All controller customer output alarm contacts are available at the **J4** output connector interface. J4 is a 20-pin right angle header with latching capability. Standard color coded alarm cable assemblies are available. Part numbers for the 50' and 150' 24AWG solid twisted pair output cables are CC848817635 and CC848817643, respectively. Contact technical field support for additional cable options. Utilize the appropriate cable to obtain the desired connections to the outputs shown below.

Pin # Wire Color	Signal Name	Pin # Wire Color	Signal Name	Pulsar Plus Display Defaults
1 (BL)	PCR	11 (BL-BK)	PCR_C	Power Critical Alarm (PCR)
2 (0)	PMJ	12 (O-BK)	PMJ_C	Power Major Alarm (PMJ)
3 (G)	PMN	13 (G-BK)	PMN_C	Power Minor Alarm (PMN)
4 (W)	R1	14 (W-BK)	R1_C	Battery on Discharge (BD)
5 (BK)	R2	15 (BK-W)	R2_C	Very Low Voltage (VLV)
6 (BL-W)	R3	16 (BL-R)	R3_C	Fuse Alarm (FAJ1/2/FAN1/2)
7 (O-R)	R4	17 (R)	R4_C	AC Fail (ACF)
8 (G-W)	R5	18 (R-G)	R5_C	Rectifier/Converter Fail (RFA/CFA)
9 (W-R)	R6	19 (R-W)	R6_C	Multiple Fail - Rectifier/Converter/AC (MACF/MRFA/MCFA)
10 (BK-R)	R7	20 (R-BK)	R7_C	High Voltage (HV)

Table 5 Output Alarm Connector

Configuration jumpers for the alarm outputs have been set to provide an "Open" on alarm from the factory. See previous sections for changing the alarm contact type at J4.

Step Action

Network (LAN) Connection (Optional)

The controller provides a standard 10/100Base-T Ethernet connection for a LAN or direct Craft port connection. Connector **J5** is a standard RJ45 shielded receptacle connection for standard Cat- 5 cable connection between the controller and the LAN. This port has two main modes of operation: Server mode and LAN mode (Static and DCHP Client). The factory default configuration for the port is operation as a DHCP Client.

In DHCP Server mode the port can be used as a local Craft interface. In this mode, a laptop can be directly connected to J5 with standard straight-through Cat-5 cable. A standard web browser can then be used to access the controller by typing in network address http://192.168.2.1. All controller's in DHCP Server mode use this same address. A connection must never be made between the controller and LAN while the controller is in Server mode.

In DHCP Static or DHCP Client modes of operation the controller is to be configured with an IP address as well as other network parameters. In these modes of operation the power system can be remotely monitored and accessed over the network. Permanent connections between the controller and LAN must use a Shielded Cat-5 cable and be routed according to appropriate building code. Following is the pin assignment for the connection:

Pin #	Signal Name
1	TX+
2	TX-
3	RX+
4	
5	
6	RX-
7	

Note: A position for an additional RJ45 port is provided on the front panel for a future controller upgrade that will provide access to a second independent Ethernet connection. This connector has been designated J8.

Connect to the Controller Step Action Telephone Line Connection (Optional) Skip this section if the controller is not equipped with the Modem option. Slot-Controllers A standard RJ11, **J6**, provides a direct connect to a POTS line. Door-Mount controllers Modem provides an RJ11 connection for the POTS connection. Modem should be mounted according to respective system drawing. J6 Connector Use routing techniques per code to connect from the controller to the POTS line. Note: Use of the modem does require a dedicated connection to the controller's local RS-232 Craft port. RS-232 -55.10V 0.2A Local RS-232 Serial Port Connector Standard RS-232 serial connection (DB-9 or RJ45) provided at the front panel for local Craft port or Modem. A PC using EasyView or a standard terminal emulator can be connected for local Ethernet access. The port can also be configured to support an external/Internal modem. (step 6) 7 The local port pin assignments take the assignment as a Data Circuit-terminating Equipment (DCE). When the RS-232 port is configured for a Modem, Craft port connectivity is temporarily lost. The Modem will have to be disconnected to use the port as a Craft port. This port is factory defaulted to operate as local Craft port. RS-232 (RJ-45)

Step

Pin#	Signal Name
1	232DCD (RS-232 Data Carrier Detect)
2	232RXD (RS-232 Receive)
3	232TXD (RS-232 Transmit)
4	232DTR (RS-232 Data Terminal Ready)
5	Ground (Current Limited Ground)
6	232DSR (RS-232 Data Set Ready)
7	232RTS (RS-232 Request To Send)
8	232CTS (RS-232 Clear To Send)
9	NC (No Connect)

Action

Table 6 Local RS-232 Serial Port Signals

Note: an RS-232 to USB adapter (dongle) may be used to connect the RS-232 port to the USB port of a PC. Adapters may require a specific manually set baud rate to operate properly. See Figure 10: Configuration Menu (part 2) and Table 30 Communication Ports Configuration.

Note: before connecting the USB or RS-232 port to your PC, be sure that the power system and its output are properly grounded. Discharge Ground (DG) bus must be bonded (connected) to earth ground.

CAUTION: damage to the controller may occur if the USB or RS-232 port is connected to a PC when Discharge Ground (DG) bus is not bonded (connected) to earth ground.

NE843E/ NE843G Controllers Only

The connections described in Steps 8 and 9 are automatically performed internally through the backplane connection for NE843A/CP843A/EP843D Slot-Controllers. Although the Infinity NE-M, NE-D, NE-S systems have the NE843E, and pre-wired in the factory, the connections are valid.

Power And Sense Connector

Skip if (NE843E/NE843G pre-wired in factory)

Basic power and sense to connector **J9** must be made in order for the controllers to function. The pin assignments for **J9** are listed below.

	er	
		Action
Pin #	Signal Name	Description
1	RS485+	"B" side of the RS485 differential pair.
2	GP_REF	Reference lead for the RS485 rectifier GP bus. Must be connected to the reference side of internal communication circuitry in the rectifier. DC Return bus (DG/Ground) in Infinity NE Negative 48V DC bus (BAT) in CP/EPS
3	V2SNS_BAT	Second Sense Voltage connected to appropriate non-grounded sidedof the second DC bus (BAT) to provide voltage sense. In NE Power Systems this connection is connected to negative DC bus of a -48V system.
4	V2SNS_DG	Second Sense Voltage connected to appropriate return/groundedside of the second DC bus (DG) to provide voltage sense. In NE Power Systems this connection is connected to positive DC bus of a -48V system which is also return/DG.
5	V1SNS_DG	Primary Sense Voltage connected to appropriate return/groundedside of the primary DC bus (DG) to provide voltage sense. In NE Power Systems this connection is connected to negative DC bus of a +24V system which is also return/DG.
6	VISNS_BAT	Primary Sense Voltage connected to appropriate non-grounded sided of the primary DC bus (BAT) to provide voltage sense. In NE Power Systems this connection is connected to positive DC bus of a +24V system (BAT).
7	RS485-	"A" side of the RS485 differential pair.
8	DG	Reference connection to the Grounded/return side of the DC bus foralarms.
9	V2-	Connection to the negative potential of the secondary DC bus for secondary input power.
10	V2+	Connection to the positive potential of the secondary DC bus for secondary input power.
11	V1-	Connection to the negative potential of the primary DC bus for themain input power.
12	V1+	Connection to the positive potential of the primary DC bus for main input power.
	•	Table 7 Power And Sense Connector

Connect to the Controller

Step Action

Note: V1 and V2 sense and power inputs can be used for 48V or 24V, vice versa.

Systems from the factory will be wired such that V1 is for +24V connections and V2 is for -48V connections when possible for product consistency. If connecting the system up for single voltage plant application, regardless of the system DC potential, it is recommended that signals associated with V1 sense and power inputs be utilized. Thus, connections must be made to GP_REF, V1SNS_DG, V1SNS_BAT, DG, V1-, and V1+ in order to get the appropriate voltage at the front panel test jacks. If it is desired only to hook up the V2 sense and power inputs then the V1SNS_DG(pin 5) and the V2SNS_DG (pin 4) signals must be tied together at J9.

Power For The NE843G

The NE843G is primarily applied with the CP (Compact Power) family of rectifiers. Kit CC109144820 provides all the components necessary to connect to a J85480S1 L1 or L4 CP shelf. CC848845058 is the power cable provided with the kit. Attach one end of the cable assembly to the power connector J9 located on the side of the controller and the other end with the ring terminals to the DC output of the shelf.

The red wire is the Positive (+) DC bus connection and the black wire is the Negative (DC) bus connection. Use the lances designed into the controller shelf to secure the cable in place.

Note: the NE843G is a versatile controller that can be used with a variety of rectifier families. Consult technical field support or sales for the availability of other kits or application needs.

Connect to the Controller

Step Action

RS-485 Serial Connection (Skip if factory installed in the system)

In addition to being available at connector J9, the RS-485 rectifier communication bus is also accessible at connector J10. J10 is a standard shielded RJ45 connector on the controller that provides quick connections between the controller and serial system rectifiers and components. J10 is not available on slot-controllers since these units obtain their RS485 connections internally through a backplane connection through J9. J10 is used to directly connect to power shelves and distribution control boards such as the QS871, NE82, and ES772. Following is the pin assignments for connector J10:

Pin#	Signal Name	Description
1	RS485+	"B" side of the RS485 differential pair.
2	RS485-	"A" side of the RS485 differential pair.
3		Reference lead for the RS485 rectifier GP bus. Must be connected to the reference side of internal communication circuitry in the rectifier. • DC Return bus (DG/Ground) in Infinity NE • Negative 48V DC bus (BAT) in CP/EPS
4 -8	No Connection	

Note: when using J10, the GP_Ref signal must still be referenced properly in the system.

Communication For The NE843G And CP843A

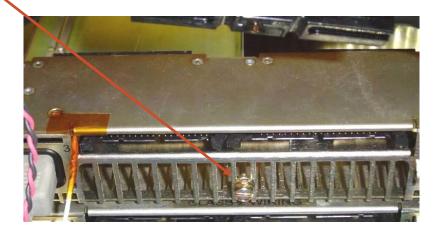
with the Compact Power (CP) Line of systems

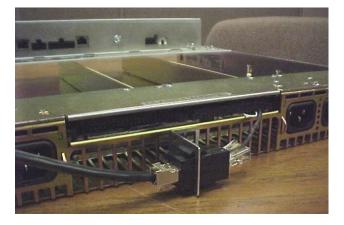
NE843G

9

Kit CC109144820 provides all the components necessary to connect the serial communication of the NE843G to a J85480S1 L1 or L4 CP shelf. These components include a CC848833475 communication cable (ribbon cable to RJ45 adapter on rear of CP shelf), a CC848833384 RJ45 bracket (for adapter cable), CC408574131 M5 screw

(to secure bracket to CP shelf), a 555052-1 RJ45 Coupler, and a CC848791500 a 4' RJ45 Serial Cable (Controller to 1st CP Shelf).


- Use the M5 screw to secure the RJ45 bracket to the **first** CP shelf at the ground screw location located at the rear of the shelf.
- Attach the RJ45 coupler to the adapter bracket.
- Connect IDC end of the communication cable to J1 on the rear of the CP power shelf and the other end to the coupler.
- Attach the RJ45 serial cable between the shelf adapter and J10 of the controller. Note a standard RJ45 Cat-5 cable can be used to make the connection between the CP shelf and the NE843G.
- Strain relief the communication cable to the shelf and controller as necessary.


Connect to the Controller

Step Action

Ground Screw

Once connected the CP communication will resembled that depicted below.

The RJ45 communication bracket must not interfere or be interfered with by the multi-shelf cable interconnections. Ribbon cable assembly 848738253 must be used to connect from J2 of the first CP shelf to J1 on the second CP shelf as shown.

Connect	to the Controller
Step	Action
	The CP843A controller is slot controller and automatically connects up to the RS485 rectifier control bus once inserted into a power slot. However, the CP shelf must still be configured to operate in RS485 mode. This is done by using cable assembly CC848838284 which enables the RS485 mode of the shelf. The addition of other CP shelves utilizes the same inter-shelf cable 848738253 previously described. • Plug CC848838284 cable assembly into J1 of the first CP shelf.
	Note: the NE843G can be used to communicate with a variety of other Protocol based serial rectifier families. Consult technical field support or sales for the availability of other kits or application needs.
10	RS-232 Serial Connection For Local Port And MODEM Connector J12 is a 14-pin right angle Molex connector used to make connection to an optional MODEM or is brought to the front panel DB9 or RJ45 for serial Craft port access. J12 access is not available on the NE843A/CP843A/EP843D slot-controllers or the NE843G. Use the provided cable assembly to connect to the BSM modem. Note: the connection to the front panel serial port will have to be removed and secured appropriately. Once the MODEM is installed the front panel serial port will not be active.

Initial Startup of the Controller

Once all relevant installation procedures are performed as defined in respective system product manualsand documentation, the system is ready to be powered up.

Initial S	Startup of controller	
Step	Action	
1	Verify all connections are as described previously before applying power. Leave all rectifier and converter modules disconnected initially.	
2	If equipped with batteries, verify their connections are made with the proper polarity, then, place all external battery disconnect switches into their ON positions. Use an external meter to verify again proper polarity.	
3	Plug in a single rectifier module to the power system and turn on its AC input service. Verify the Pulsar turns on and shows the correct voltage and polarity before continuing. Only if both the voltage and polarity are shown correctly, plug in and apply AC power for the remaing rectifiers, then the converters (if equipped),	
	After approximately one minute, all LEDs on all components including rectifiers and converters, the controller, LVD control boards, aux displays, and remote voltage monitor modules should be green. If this is not the case, initiate the "Clear Events" and "Uninstall Equipment" operations found under Menu Control/Operations menu. Alarm conditions should clear. If all LEDs still aren't green, review the installation procedure and refer to the troubleshooting section. The controller display will indicate "NO ALARMS", system float voltage, total load current, and system operating mode. LEDs and back-light will be green for no alarms.	
	Pulsar Plant Status LEDs	
4	RS-232 and Ethernet Ports to plug in a PC to use Web Pages Galaxy Pulsar +27.2v1 63.5A -54.00v2 1000A Float No Alarms Menu	
	Voltage Test Jacks LCD Display Menu Navigation	
	Contrast can be adjusted for the site's ambient condition by using the up and down arrow keys at the default menu shown. Contrast adjust is also available at : Menu → Configuration →System Settings →Display →Contrast	
	*The display may have a protective transparent covering over the LCD portion. Make sure thiscovering has been removed for optimum viewing before adjusting the contrast.	

Initial Sta	artup of the Controller
Step	Action
	Check the voltage reading on the controller display to verify that it complies with the system float voltage setting. The controller is factory configured with a rectifier Float voltage set-point of - 54.00V for -48V rectifier systems and ±27.24V for ±24V rectifier systems. If converters are present, the display shows their voltage and current in smaller font. The Controller is factory configured with a converter output voltage set-point of -52.0V for -48V converters and +26.0V for +24V converters.
5	Note: If Slope Thermal Compensation (STC) is active or if the connected batteries are not fully charged, the bus voltage may be different than the set-point. If possible, open the external battery disconnect prior to making measurements to eliminate these effects. If QS873 VT probes are installed in the system. STC may be active. This will be indicated by the Plant Mode "FLOAT – TEMP COMP".
	STC can be manually turned off at:
	Menu→Configuration→Batteries→Batt Temp Management→Temp Comp.
	If this is done, be sure to Enable the feature before leaving.
	Verifying a simple alarm
	Remove a rectifier from its slot. The controller will illuminate its back-light or status LED amber indicating a missing rectifier condition.
6	When the controller prompts to remove equipment press enter •. This is a short cut that initiates the "Uninstall Equipment" operation found under the Menu→Control/Operations menu. The alarm condition will clear and correct rectifier status will be displayed in Menu→Status→ Rectifiers.
	Return the rectifier to its slot. The controller will update the rectifier status. If the above conditions did not yield the proper results, refer to the troubleshooting section.

Basic Controller Configuration

The Pulsar Plus family of controllers are a multiple micro-processor based unit with volatile and non-volatile memory. These units have been factory preconfigured with standard or customer specific configuration default settings for all features and thresholds. Many systems shipped from the factory all ready have the controller installed, configured, and tested for the system it resides. Installation and much of the configuration of the system controller may not be required. The date and time is generally set at factory test to Central Standard Time zone.

Controllers with customer specific configuration defaults are also available. These units will be assigned a unique apparatus code for ordering and management. A configuration template is available to facilitate this process. OmniOn PowerTM Systems predefined industry standard factory defaults are utilized for the Pulsar Plus family standard controllers. Although the configuration default files are permanently stored until they are replaced, all configurable parameters and thresholds can also be reconfigured or modified as needed in the field. These items are then stored in non-volatile memory. However, a user can always return to factory programmed configuration by initiating the "Loading Defaults" operation for a specific battery type.

The **Basic** items to configure for basic system operation are:

- Float Set-Point (And associated alarms described in next section)
- Battery Type and number of strings
- Date
- Time

The controller is designed to support multiple battery technologies. These **Generic** technologies include:

- Valve-Regulated Lead Acid (Valve-Reg)
- Flooded Lead Acid (Flooded)
- Lithium Metal Polymer (Li-LMP)
- Lithium ELiTE (Li-ELiTE)
- Nickel-Cadmium (Ni-Cd)

Standard float values, alarm thresholds, and other functions are set as defaults for each of these battery types that can be modified in the field as desired. The controller also provides a list of industry standard batteries that are linked to these technologies and share the standard defaults. Batteries can be added or deleted from this list as required through the use of the controller's remote interfaces.

The controller has been factory pre-configured with the generic Valve-Regulated Lead Acid (Valve-Reg) battery as the standard configured battery model. All associated configuration items for the "Valve-Reg" battery type are utilized. Thus, the default system float voltage setting and alarm thresholds are configured assuming the power system contains VRLA batteries that require an uncompensated float voltage of 54.00V (-48V) or +27.24V (+24V) as observed during the power-up procedure.

Basic configuration items such as the battery type, float set-point, date, and time, and site ID can be reconfigured in the field from the front panel or through remote means. To change these items do the following:

Basic Controller Configuration Action Step Change the battery type to another battery type or specific model. From the front panel go to Menu+Configuration+Batteries+Type and select a battery model from the list. If the battery model is unique, select a generic technology class for the installed battery or use the Craft port to enter a specific battery model. A new model can be entered into the controller through the use of the web pages at **Settings>Battery Types**. Note: the present controller can store 20 specific batteries. One may have to be deleted before adding. Specific battery models stored in the standard controller: 12A100FT 12A150FT 12IR150/150LP 3A125-33L 3A95-21L 3A95-27L 3A95-33L 6A95-13L 6A95-15L IR30EC **Battery Type Definition** AmpHours IR40EC Model Technology 1 GENERIC FLOODED L54V63FTX GENERIC U-ELITE NCX-125 GENERIC U-LMP 63 NCX-80 GENERIC Ю NICE NSB110FT GENERIC VALVE-REG 0 NSB170FT 12A150FT VALVE-REG 145 ☐ delete NSB60FT 12IR150/150LP VALME-REG 145 ☐ delete SE48S63 IR40EC VALVE-REG 35 delete SE48S80 L54Y63FTX U-ELITE 63 □ delete NICD NCX-125 125 □ delete TEL12-105F NCX-8D NICE 80 □ delete NSB110FT VALVE-REG 110 ☐ delete Generic Battery technologies: NSB170FT VALVE-REG 170 ☐ delete Valve-Regulated Lead Acid (Valve-Reg) NSB60FT VALVE-REG 60 ☐ delete Flooded Lead Acid (Flooded) SE48S83 LI-LMP 60 □ delete TEL12-105F VALVE-REG 100 Lithium Metal Polymer (Li-LMP) delete FLOODED 🔻 Lithium ELiTE (Li-ELiTE) Nickel-Cadmium (Ni-Cd) Submit

Basic	Controller Configuration
Step	Action
	Press "save" once the correct battery is selected. If a generic battery type is selected select "Yes" to load the standard defaults. Note the controller will ask if the standard defaults are desired selecting yes will select the standard defaults for the selected battery. Selecting no, will leave settings at the default settings for the generic VRLAs. The float set-point value is one of these items. Note: Slope Thermal Compensation has been factory defaulted to be enabled with all VRLAbatteries. If a VRLA battery is selected and there is no QS873A battery temperature probe attached to the controller a "Thermal Probe Fail" alarm will be generated. The alarm can be removed by connecting a probe to the system or by disabling the feature. The feature can be disabled at Menu→Configuration→Batteries→Batt Temp Management→Temp Comp. Select the Temp Comp and change the feature to be "Disabled". Save.
	To change the system rectifier Float-set-point go to
2	Menu→Configuration→Float Settings→Set-Point Set the desired system bus voltage. Save.
3	Set system date by going to: Menu→Configuration→System Settings→Date Set to current date. Set system time by going to: Menu→Configuration→System Settings→Time Set to present time.

Web Interface

The controller has an integrated 10/100Base-T port that supports standard protocols over TCP/IP like SNMP, TCP/IP, FTP and Telnet. It also has an integrated HTTP web server that serves up web pages to remote PCs using standard web browsers. Once properly connected to the network, simply typing the IP address assigned to the controller in the browser will serve up the log-in screen. The web pages support the majority of the functionality supported by EasyView and the T1.317 interface. The best way to learn the operation and content of these interfaces is through use. The basic operations performed at the front panel previously described are available through the web interface as well as all front panel configuration items. Following are few sample screens. Note: web pages are updated for functionally and aesthetics. Thus, some of the screens shown may be slightly different than those served up by your controller.

Craft Port

The web interface can be accessed remotely over the LAN or with a direct connection from a local PC. Once logged in the interface is the same. The following describes configuring the port as a local Craft port. This mode of operation allows a user to connect an external craft PC directly to the port and use the PC's standard Web browser to locally access the system. This Craft port is supported by the controller operating in DHCP (Dynamic Host Configuration Protocol) server mode. While the Craft port is operating as a DHCP server, it must **never** be plugged into the building or surrounding LAN.

To access the system using the Craft Port follow the following basic procedure:

Web Interface Configuration				
Step	Step Action			
	Find and take note of the controller's Working IP (WIP) on the front panel display by going to Menu→Status→Network Settings→Port 1			
	Note: If the Port is not configured as a Server it will not port locally as a Craft port it needs to be configured as a DI validated at Menu-Status-Network Settings. Scroll down	HCP Server. DHCP Server operation can be		
1	If it is not in DHCP Server mode, make sure the Craft port is reconfigure the DHCP setting from the front panel to be S Menu+Configuration+Communication Ports+Network Se	erver. This is parameter is found in ettings DHCP.		
	Note: Changing a Network parameter like this will generate rebooting however, it is necessary to live with this alarm for be saved in memory. Then, from the front panel, the control/Oper →Reboot Controller or by removing and reappy this new Ethernet port configuration. Repowering can be controller or by removing and reattaching the power controller or by removing and reattaching two minutes. V →Network Settings.	approximately 2 minutes, to permit the change to oller may be rebooted by either Menu path: Menu → olying power to the unit so that it can start using done by removing and re-inserting the slot ection at J9 on the door-mounted or shelf controller. alidate the change to server mode at Menu → Status		
2	Attach the LAN cable between the RJ45 (P2) on the main board to the appropriate Ethernet porton the Craft PC.			
3	Open the PC's browser and enter the controller's WIP as the destination address. This address is http://192.168.2.1 by default. The controller has HTTP capabilities and will begin to return appropriate system representative web pages.			
	With a standard browser, a login page similar to that depicted below will be served up by the controller. There are three levels of access through the port; Read-Only, Read/Write, and Read/Write with password management privileges. Passwords defaults for the Craft port as well as other remote access means default as follows:			
4	Access User (Read-Only) Super-User (Read/Write) (Read/Write/Password Administration)	Default Password OmniOn Power™ super-user Administrator administrator		
	Enter Password			
	Password: Submit	Reset		

Security Levels/Passwords

• The controller supports three levels of access: (User, Super-User, and Administrator). Password defaults can be changed only by a user of administrator privileges.

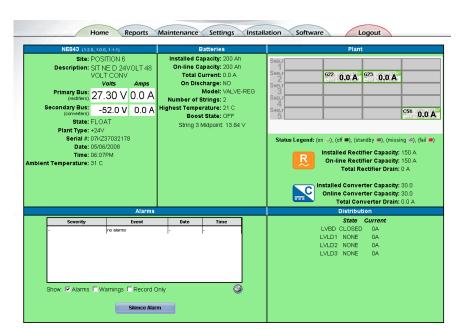
User security level:

- Can view almost every parameter in the system
- Can change only a few parameters considered to be of standard maintenance practices
- Default password: OmniOn Power™

Super-User security level:

- Can do everything the user can do
- Can change any configuration parameter in the system (except passwords)
- Default password: super-user

Administrator security level:

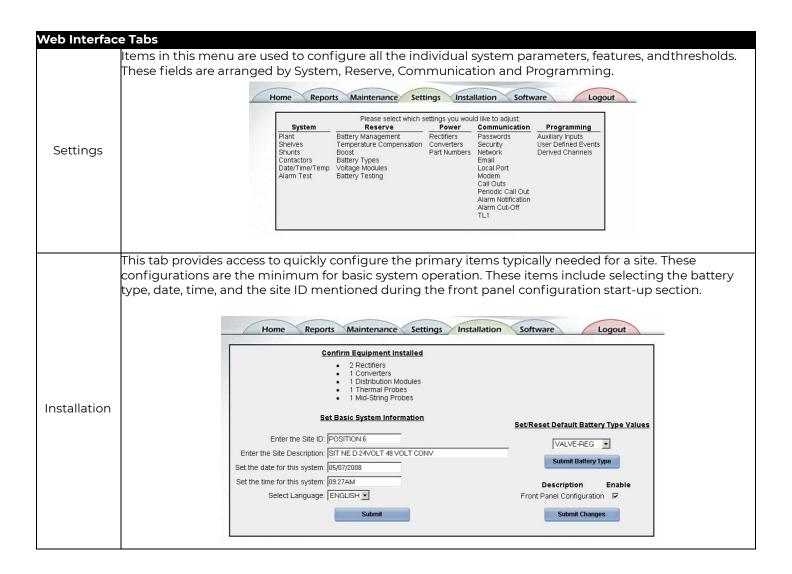

- Can do everything the super-user can do
- Can change passwords
- Can upgrade controller software
- Default password: administrator

After the controller has granted access through the port, the controller serves up a Home page similar to that shown below. Front panel access and capabilities are a super-set of the functions and features available through the Craft port. Configuration of individual parameters and features can be performed by using the items located in the Settings tab or a general quick configuration of the system can be performed through the Installation tab. The Home Page has tabs that are partitioned as the following:

Web Interface Tabs

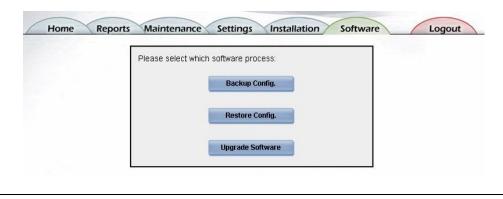
High-level summary for the Power Units, Batteries, Distribution, Alarms present, and Controller summary are shown. There are also quick link tabs that take you to the other web pages. These tabs are the Home, Reports, Maintenance, Settings, Installation, Software, and Logout:

Home


Note that the Home page includes a representative graphic of the power components that make up the power system. These include the number of shelves, rectifiers in place with their appropriate outputs, converters and outputs, empty slots, and indications of which rectifiers/converters are in alarm. In order to depict these properly, this layout may need to be adjusted on the **Settings** • **System** • **Shelves web** page

Web Interface Tabs The reports tab displays reports that the system controller can display through web pages. These reports include Event History, Inventory, Statistics, Trends, and Battery on Discharge. Individual history groups like Alarm History, Boost History, Login History, and Rectifier history are also available. Installation Home Reports Maintenance Settings Software Logout Reports Please select which report you would like to view: Inventory Alarm History Battery Discharge Boost History Statistics Login History Trends Rectifier History Converter History Allows remote access to Control/Operation commands that are available through the front panel. These include restarting rectifiers/converters, starting alarm or battery tests, asserting boost, clearing history and statistics, clearing latched events and missing equipment, placing rectifiers/converters in and out of Standby, cutting of the audible alarm. A controller reboot may also be initiated here. Reports Maintenance Settings Installation Software Home Logout Rectifiers Rectifiers No rectifiers in standby lamp test clear missing devices open LVBD G22 G23 no LVLD1 contactors cutoff audible alarm clear latched events no LVLD2 contactors restart rectifiers clear history no LVLD3 contactors All History • restart converters Maintenance clear statistics boost All Statistics start battery test Converters Converters No converters in standby C54 start alarm test start local audio test (remote standby) load defaults Factory 🔻

T1.317 Terminal..



Web Interface Tabs

This tab provides access to the Backup, Restore, and Upgrade features. Backup allows auser to store the controller's entire configuration to a "config.gal" file. This file can be used to configure other controllers with the same exact configuration or to "restore" the configuration of a controller that was modified in the field. The "Restore" tab provides this configuration upload ability. The "Upgrade Software" tab allows a user to upgrade specific portions of the controller's code: web pages, application code, configuration factory defaults, and language file. The controller supports two front panel languages. English, Spanish, French, and German are a few languages supported by the controller. Language support for web pages will be available in the future. Consult appropriate sales or technical support for Language file availability.

Software

Web pages will continuously be improved. A good method to use to understand the functions and features of the controller is by accessing the controller through the network or Craft port and click on the individual items to become more familiar with the items. More details on the front panel capabilities and Craft port web pages are found in the controller section.

Controller Operation

Overview

The Pulsar Plus family of controllers provides system monitoring and control features for Infinity NE, CP, and other OmniOn Power™ rectifier based power systems. These controllers monitor and control system components including rectifiers, converters, and distribution modules via a

multi-drop RS485 digital communications bus. System status, parameters, settings, and alarm thresholds can be viewed and configured from the controller's front panel display. Assignment and configuration of alarm inputs and output relays can be performed from a laptop computer connected to a local RS-232 or Ethernet port, or by remote access is through a network connection to the World Wide Web (internet) or your enterprise network (intranet). An optional modem is also available.

This section describes the controller features, functions and alarms from perspective of a user utilizing the front panel display. All these features are available through the remote interfaces including EasyView2TM and Web pages served by the controller. EasyView2TM is the graphic user interface (GUI) OmniOn PowerTM provides for local serial port or remote MODEM access available on the web site. The web interface and front panel will be the interfaces of choice. This section focuses on describing the controller from the front panel perspective since it is the most available interface and requires no PC or computer hardware. The items contained in the front panel are applicable to respective feature implementations in the web pages.

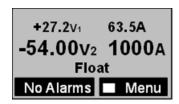


Figure 5: Front Panel Display

The Pulsar Front Panel display in Figure 5 shows the front panel display for a system with both rectifiers and converters. The display (V1 versus V2) correlates with test jacks. The large font indicates the "Primary" or rectifier dc bus; the smaller font shows the "Secondary" or converter dc bus. The controller will automatically determine the appropriate fonts and test jack designations.

For systems with no converters only a single voltage/current pair will be displayed on the front panel along with the correct test jack association. The other test jack will be unused and will have near zero voltage.

Front Panel Controls and Status Display Pulsar

Controls

Pulsar controllers have six tactile buttons for navigation through a structured menu system. The buttons serve multiple purposes depending on the active screen. These functions are summarized below.

Navigation Controls - Pulsar			
Buttons	uttons Description		
	Display Contrast	In the Main Display, the ▲▼ buttons increase or decrease the display contrast. Contrast adjustment is also available through the menus at Menu→Configuration→System Settings.	
	Parameter Change	When changing a system parameter, the ▲▼ buttons increase or decrease the value of the parameter.	
	Direction Buttons	In the Menus, the □▲▼□ direction buttons navigate to make a selection. A black box highlighting a menu item indicates that the item has sub-menus.	
	Enter Button	Enters a sub-menu or confirms a parameter change. From the Home Page only, goes to the top level Main menu.	
	ESC Button	Goes up one menu level or exits a parameter change without saving.	

Pulsar

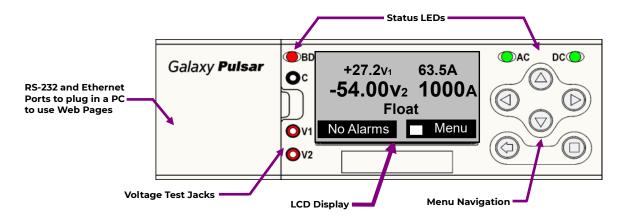
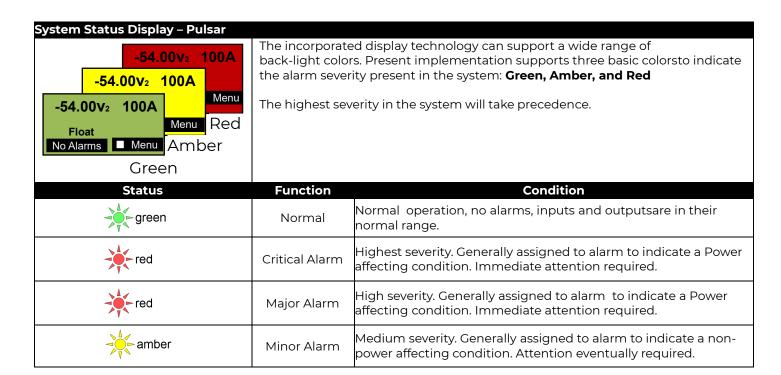



Figure 6: front Panel

LCD Back-light

Pulsar controllers incorporate an alarm severity back-light indicator. Severities of alarms can be configured through the remote interfaces. Following is a basic description of the back-light functionality.

Status LEDs

Pulsar controller displays provides three LED indicators to provide more specific indications of the system status. These LEDs provide specific indication concerning the AC and DC system status and Battery on Discharge state. These LEDs have factory assigned defaults as indicated in the table below. However, the assignments to alarms can be customized in the field using the remote interfaces.

LED	Status	Condition
AC	green	AC input to all rectifiers is in range.
	amber	AC input to one rectifier is missing or out of range.
	red	AC input to two or more rectifiers is missing or out of range.
DC	green	DC output to all loads is normal.
	amber	One or more of the following alarms are present: Fuse Minor 48, Fuse Minor 24
	red	One or more of the following alarms are present: Open String, LVBD Open, FuseMajor 48, Fuse Major 24
BD	green	System above configured Battery on Discharge (BD) threshold.
	amber	Not used
	red	System equal to or below configured Battery on Discharge (BD) threshold.

Table 8 Status LEDs - Pulsar

Audible Alarms

The controller has an integrated audible alarm located in its display assembly. This alarm will sound when any Critical, Major, or Minor alarm is detected by the controller. Upon assertion of the audible alarm the default front panel will provide and indicator of the alarm as well as a quick link to temporary cut-off the alarm.

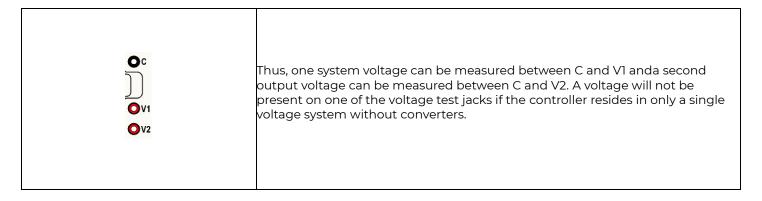
-54.00V₂ 100A

BATT ON DISCHARGE

Alarms A Menu

Pressing the arrow key on a Pulsar controller or the ACO pushbutton on a Phoenix controller provides a quickly temporarily sliences the audible alarm.

Once the audible cut-off is selected the alarms present in the system are listed. An indicator on the default front panel screen is provided to inform that the audible alarm cutoff is active. The audible alarm can also be turned-back on following similar procedures.



The audible alarm may be disabled altogether through configuration at the front panel menu path:

Menu → Configuration → System Settings → ACO → Local Buzzer or through the web pages.

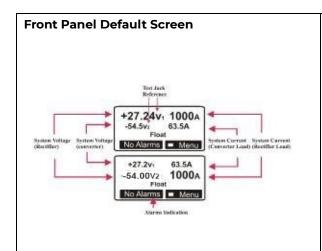
Voltage Test Jacks

The controller front panel display has three test jacks that allow you to measure the system output voltage with a hand-held meter. The jacks are referenced with C (Common), VI (Voltage One), and V2 (Voltage Two) or Common, Plant, and Converter. The voltage references correspond to the voltage referenced on the default front panel screen. For product consistency, factory built systems connect the controller in a manner such that VI provides access to the +24V DC bus and V2 provides access to the -48V DC bus.

Local and Remote Access Ports

The controller provides communication ports for both local and remote access. Access to these ports depends on the specific controller configuration. Standard configurations of the Pulsar all have a front panel hatch located to the left of the test jacks that provide access to a local RS232 port.

Local and Rem	ote Access Ports
Port	Description
	A laptop PC can be connected to standard DB9 connector J7 to provide a ground-referenced RS- 232 serial connection using EasyView ™ for local access. The port can also be configured to be used with an external modem.
J7 RS-232 Ethernet J8	A position (as shown below) is reserved for a second RJ45 Ethernet connection in thefuture. It is covered for now.
Side /Top	
J5	An RJ-45 Ethernet connector, Connector J5, on side (slot-mounted) or top (door-mounted) of the pulsar to provide for the integrated 10/100 Base-T network. Connection. This connection can be used for remote monitoring or as a local Craft port. In the remote monitoring mode, this port is compatible with OmniOn Power TM Manager or otherSNMP based programs used for web-based remote access and network management. Controllers equipped with an optional modem provide a standard RJ11 (J6) for atelephone line connection.



Front Panel Menu Structure

Feature content at the front panel is functionally divided at the Main Menu into the following categories:

Alarms
Warnings
Status
Control/Operations
History
Configuration

Access to the main menu starts at the default front panel screen shown below.

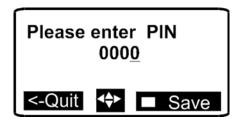
The front panel default screen displays the primary (Rectifier) and secondary (Converter when present) system bus voltages along with their respective total load in two different fonts. The larger font represents the rectifier output. Converter output voltages are also shown with one decimal extension and rectifier outputs have two decimal points. V1 represents +24V and V2 represents -48V systems. Test Jacks V1 and V2 provide access to these output voltages, respectively.

The operating mode of the system is also displayed. Possible operating modes are: Float, Battery On Discharge, Boost, etc.

An alarm soft-key as well as the back-light or status LED will indicate when alarms are present. Pressing the ï will access the alarm cut-off as well as the alarms and warning present in the system.

Pressing the <u>pressing</u> button accesses the main menu and the feature categories previously listed.

Main Menu


Status Control / Operations History Configuration Access to alarms, warnings, equipment status detail, basic control and operations for maintenance purposes, and system configuration can be obtained.

Note: the controller has the ability to have a front Panel PIN that limits configuration as well as some operations. A person with administrator level access can enable this feature through the remote interfaces. Standard controllers are shipped from the factory with this feature disabled.

Front Panel Pin

Controllers have the ability to restrict certain types of access from the front panel of the unit. It has the ability to enforce a four-digit Power Identification Number (PIN) requirement for users of the front panel for certain control/operations and configurable items. These control/operations and configurations are generally considered the items that will only be done during initial install or by specific personnel. This feature is shipped disabled from the factory in the standard controller offering and must be enabled by a remote user with administrator level privileges. When the front panel PIN feature is enabled, the factory default for the PIN is **0000.** Each position of the password is configurable between 0-9. A sample screen like that following is required for PIN access.

The up, down, left and right arrows are used to enter the appropriate PIN Upon entering a correct PIN the following momentary screen shows up and then disappears leaving the user at the menu location prior to entering the PIN.

PIN accepted total access granted

When the front panel PIN feature is enable, A user must enter the PIN for items that generally are not deemed as functions of a typical maintenance routine. It is assumed that the majority of the configured thresholds and system operational features will not be changed through a maintenance routine. Thus, entering the correct PIN will be required in order for these specific types of parameters or features to be modified in the field. These same rules are implemented when accessing through the Craft port. In addition to Configuration items, there are some Control/Operations that also require the PIN. These are shown below.

Control/Operations that require PIN

- 1. Clear History
- 2. Clear Statistics
- 3. Disconnects Manual disconnect/reconnect of any LVLD/LVBD
- 4. Enter Boost

Control/Operations that do not require PIN

- 1. Lamp Test
- 2. Restart Rectifiers
- 3. Uninstall Equipment
- 4. Start Battery Test
- 5. Start Alarm Test
- 6. Load Factory Defaults
- 7. Cut-off Audible Alarm

Configuration - Most configuration items from the front panel require PIN access.

Configuration not requiring PIN

- 1. Battery Type
- 2. String Battery Capacity (AH)
- 3. Number Of Battery Strings
- 4. Manual Discharge Test Type
- 5. Manual Test Duration
- 6. Manual Test Check Battery Alarm Voltage Threshold
- 7. Battery Test Rectifier Voltage
- 8. System Date Format
- 9. System Date
- 10. System Time Format
- 11. System Time
- 12. Automatic Daylight Savings Feature
- 13. Display Contrast
- 14. Temperature Display Units
- 15. Alarm Test Feature
- 16. Alarm Test Relay Duration and Relay

Once a user enters the PIN, total front panel access is allowed for:

- As long as the user remains in menus other than the default menu and/or
- The default display has remained on the front panel for more than user configurable time-out value. Controllers have a factory configured default of 120 minutes. This time is adjustable between 1-120 minutes in 1 minute increments. 120 minutes is the factory default.
- An internal counter is kept and reset if the user leaves the default menu and returns to others menus before the time-out period is reached.

Front Panel Menu Flow

The following figures provide a menu flow map for each primary category. This information is followed up with brief descriptions of each of the menu items. **Alarms** and **Warnings** are not hierarchal mapped and are presented in chronological order of occurrence when they are present. No Active Alarms or No Active Warnings will be displayed when they are no alarms or warnings detected by the controller.

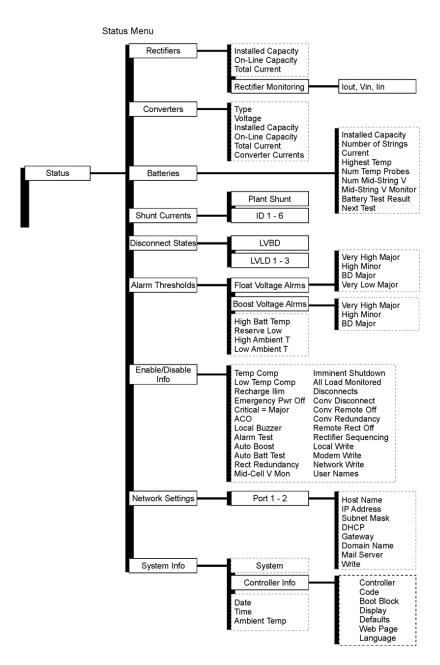


Figure 7: Status Menu

Control / Operation and History Menus

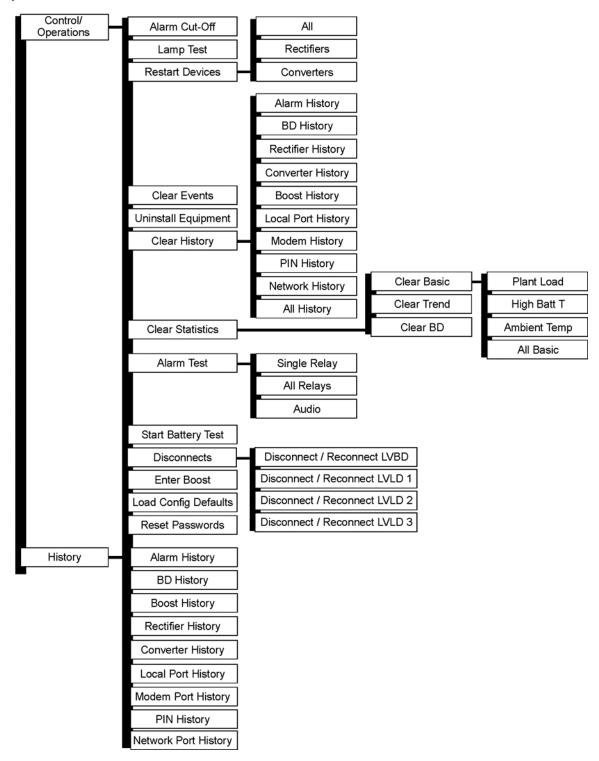


Figure 8: Control / Operations and History Menus

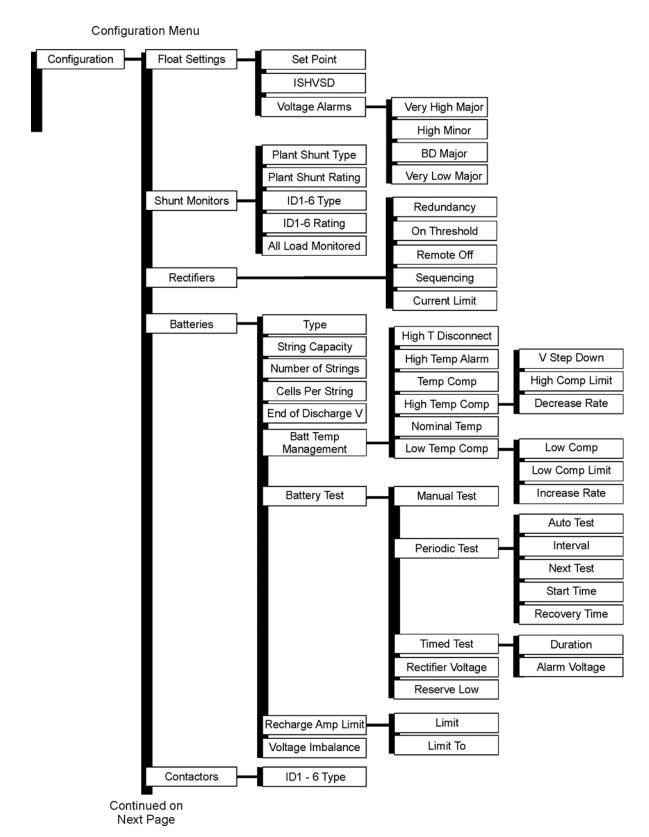


Figure 9 : Configuration Menu (part 1)

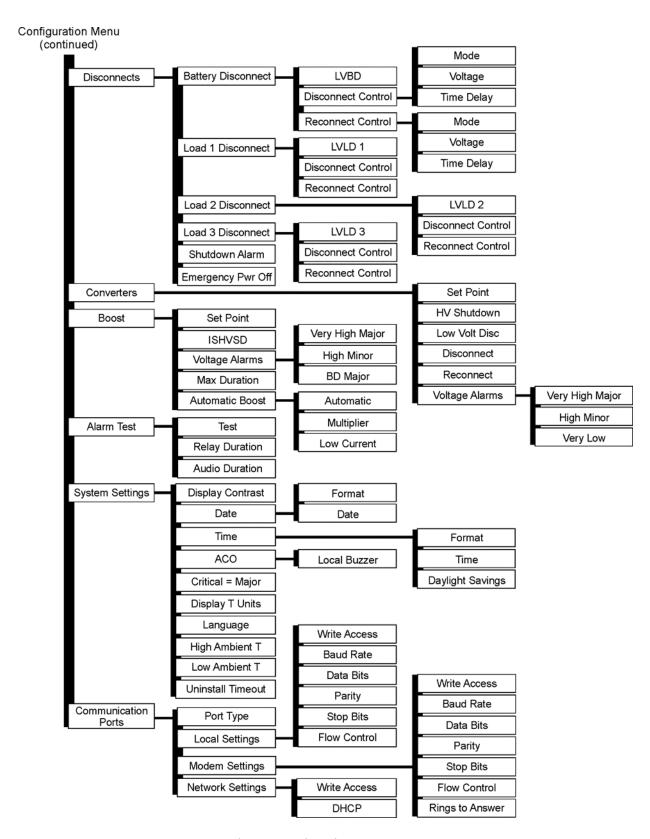


Figure 10: Configuration Menu (part 2)

Status

Status menus provide an overview of system components, threshold settings, and feature configuration. Configuration is not possible from here. Status items are also available through the remote port connections such as the web interface or local craft port using EasyView.

Rectifiers

Installed Capacity	The total installed rectifier capacity in the system. These rectifiers may or maynot have AC applied or be outputting power.
On-line Capacity	The total rectifier capacity of rectifiers On-line in the system and able to produce power. Rectifiers that are running or in Standby are considered to be On-line. Rectifiers that are in RFA, ACF, etc. are not counted in the On-line capacity.
Total Output Current	The total output current of all rectifiers. This value is also displayed on thedefault front panel screen.
	Each individual rectifier's DC output current, AC input current, and AC input voltage by rectifier number Gmn () is available. "m" represents the shelf number and "n" represents the rectifier position number in that shelf. The stateof the rectifier is also identified in the () when current is not shown. These states could be
Rectifier Monitoring	OFF: Rectifier has been shutdown due to hardware failure (ex RFA, Temp,HV).
	STANDBY: User has inhibited the rectifier's output voltage.
	MISSING: An acknowledged rectifier has been removed.
	VACANT: Rectifier has not been installed in that position.

Table 9 Rectifier Status

Converters

Туре	Provides generic description of the type of converter installed in the system.
	The information is of the format "24 to 48" or "48 to 24".
Voltage	Displays the measured value of the secondary (converter) DC output bus. Thisvalue is also
	displayed on the default front panel screen.
Installed Capacity	Provides the total installed converter capacity in the system.
On-line Capacity	The total converter capacity of rectifiers On-line in the system and able toproduce power.
	Converters that have failed are not counted.
Total Output Current	The total output current of all converters. This value is also displayed on thedefault front
	panel screen.
Converter Currents	The individual converter output currents by converter number (Cmn) are available. "m"
	represents the shelf number and "n" represents the rectifier position number in that shelf.

Table 10 Converter Status

Batteries

Installed Capacity	Total installed battery capacity based upon the number of strings in the system and the Amp-Hour (AH) rating of the strings installed. This data is automatically entered for specific battery models included in the standard controller configuration. These values can be modified in the field. AH rates are 8-hour rates.
Number Of Strings	The total number of battery strings installed in the system.
Current	Measured value of the current flowing into or out of the batteries.
Highest Temp	Highest battery temperature being measured by the QS873A thermal probes attached in the system.
Num Temp Probes	Total number of installed QS873A thermal probes. Up to sixteen QS873A probes can be monitored by the controller.
Num Mid-String V	Total number of installed ES771 Mid-String voltage measurement modules. Upto six ES771 modules can be monitored
Mid-String VMonitor	Measured values of ES771 Mid-string voltages attached in the system. Up tothree mid-string voltage readings per module.
Battery Test Result	Shows whether the most recent battery test was completed, and the last calculated reserve time.
Next Test	The date of the next automatic battery discharge test. The automatic discharge test feature must be enabled for this to work.

Table 11 Batteries Status

Shunt Currents

Plant Shunt	Displays the value of current measured by the shunt monitor on-board the controller. The plant shunt type must be set to Load or Battery and its current rating must be configured. Shunts are assumed to have a 50mV rating.
ID1-8	Displays the individual shunt monitor currents measured by attached and properly configured Distribution Control and Monitoring modules. Values may be specific load or battery currents. Distribution Control and Monitoring modules include the NE872 and QS871. Up to eight values can be displayed.

Table 12 Shunt Currents Status

Disconnect States

LVBD(1)	Provides LVBD (Low Voltage Battery Disconnect) status. "None" is displayed for each non-configured contactor. "Closed" is shown for normal contactor state. "Open" shown for contactors that have opened and disconnected the battery.
LVLD(1-3)	Provides status of the three LVLDs (Low Voltage Load Disconnects 1-3). "None" is displayed for each non- configured contactor. "Closed" is shown for normal contactor state. "Open" will be shown for contactors that have opened ordisconnected each respective load.

Table 13 Disconnect States Status

Alarm Thresholds

Float Voltage Alarms	Shows the configured settings for the Float Settings: Very High Major (HVSD), High Minor, Battery on Discharge (BD) and Very Low Voltage (VLV) alarms. Values are shown in (xx.xxV) format.
Boost Voltage Alarms	Shows the configured settings for the Boost Settings: Very High Major (HVSD), High Minor, and Battery on Discharge (BD) alarms. Values are shown in (xx.xxV)format.
High Batt Temp	Shows measured value of the highest battery temperature of all attached QS873 battery thermal probes.
Reserve Low	Shows configured value for the Low battery reserve time alarm.
High Ambient Temp	Shows configured value for the High Ambient Temperature alarm. This temperature is from the temperature sensor located on the controller itself.
Low Ambient Temp	Shows configured value for the Low Ambient Temperature alarm. This temperature is from the temperature sensor located on the controller itself.

Table 14 Alarm Thresholds Status

Enabled/Disabled Info

This section of the menu provides a location to determine the Enable/Disable status of most controller features.

Temp Comp	Shows whether Battery Temperature Compensation is Enabled or Disabled.
Low Temp Comp	Shows if the Low Temperature compensation features is Enabled or Disabled. Note: General temperature compensation must be Enabled to use Low Temperature compensation.
Recharge Ilim	Shows if the Recharge Current Limit feature is Enabled or Disabled.
Emergency Pwr Off	Displays whether or not the Emergency Power Off (Remote Emergency Battery Disconnect) feature is Enabled or Disabled. If Enabled, EPO is asserted when contact closure is applied to the EPO input. The controller will keep battery contactors open until this contact closure has been removed. The feature assumes that AC has been removed to the system.
Critical=Major	Shows if the assertion of the Critical alarm severity with all Major alarms feature is Enabled or Disabled.
ACO	Shows if Audible Alarm Cut-off feature is Enabled or Disabled.
Local Buzzer	Shows if the on-board local audible buzzer is Enabled or Disabled.
Alarm Test	Shows if the Form-C Alarm Test Feature is Enabled or Disabled.
Auto Boost	Shows if the automatic boost charge mode of operation is Enabled or Disabled.
Auto Batt Test	Shows if the automatic battery test feature is Enabled or Disabled.
Rect Redundancy	Shows if the Rectifier redundancy feature is Enabled or Disabled.
Mid-Cell V Mon	Shows if the Mid-String Voltage imbalance detection feature is Enabled orDisabled.
Imminent Shut dn	Shows if the Imminent system shutdown alarm (LVBD) feature is Enabled or Disabled.

Table 15 Enabled/Disabled Info Status

All Load Monitored	Shows if the All Loads Monitored feature is Enabled or Disabled. This assumes that every load distribution is being monitored so the sum of the load currents can be used to equal the total load of the system.
Disconnects	Shows if the LVBD (Low Voltage Battery Disconnect) and LVLD1-3 (Low VoltageLoad Disconnects) features are Enabled or Disabled.
Conv Disconnect	Shows if the low voltage Converter Disconnect feature is Enabled or Disabled.
Conv Remote Off	Shows if the Remote Converter Off – Individual Remote Converter Standbyfeature is Enabled or Disabled.
Conv Redundancy	Shows if the Converter redundancy feature is Enabled or Disabled.
Remote Rect Off	Shows if the Remote Rectifier Off – Individual Remote Rectifier Standby isEnabled or Disabled.
Rectifier Sequencing	Shows if the Rectifier Sequencing is Enabled or Disabled.
Local Write	Whether or not the system can be configured through the local port.
Modem Write	Whether or not the system can be configured through the modem port.
Network Write	Whether or not the system can be configured through the network.
Usernames	Whether or not usernames and password identification have been enabled

Table 15 Enabled/Disabled Info Status (Continued)

Network Settings

This section of the menu displays the settings of the Network parameters for the two Ports. Controllers presently only utilizes Port 1. Port 2 is reserved for a second Ethernet port in the future.

	T
Host Name	Network name assigned and configured for the controller since it acts as a repository for data and services such as e-mail, FTP, HTTP, etc that are accessed remotely by other equipment or users on the network.
IP Address *	Internet Protocol address assigned to the controller that identifies the unit on the network. The format for the IP address field is a 32-bit numeric address written as four numbers separated by periods (ddd.ddd.ddd.ddd). Each number, ddd, can be 0 to 255. In the server mode, 192.168.2.1 is used
Subnet Mask *	Internal network address assigned for identifying an internal network mask that the controller has been assigned to by a network administrator. The mask selectively includes or excludes certain equipment on a Host. The format for the Subnet Mask field is a 32-bit numeric address written as four numbers separated by periods (ddd.ddd.ddd.ddd). Each number, ddd, can be 0 to 255.
DHCP	This field indicates the operational mode of the integrated Ethernet port. The port can be set to DHCP Client, DHCP Static, or a DHCP Server. DHCP Server is required for use as a Craft port. DHCP Client is the default for the LAN port.
Gateway *	This address is for the address of the Gateway or node on the network that will serve as the entrance to another network for the controller. This address is the address of the equipment or computer that routes the traffic from and to the controller to the outside network. It is generally the proxy server. The format for the Gateway address field is a 32-bit numeric address written as four numbers separated by periods (ddd.ddd.ddd.ddd). Each number, ddd, can be 0to 255.
DNS *	Address of the Domain Name Server that translates domain names into IPaddresses. This field is of the format ddd.ddd.ddd.ddd.
Mail Server	The address for the computer or equipment within the network that will manage the controller emails. The format for the Gateway address field is a 32-bit numeric address written as four numbers separated by periods (ddd.ddd.ddd.ddd). Each number, ddd, can be 0 to 255. If configured as 0.0.0.0, the controller will use the hostname mail host.
Write Access	This field shows whether the port has bee configured to allow Read/Write access or Read Only access. Read/Write access is available when the feature has been enabled.

Table 16 Network Settings Status

 $^{^{*}}$ These fields are automatically assigned when using the DHCP server or Client mode of operation.

System Info

System	Up to 55 characters used to describe the system in which the controller resides. For example: Infinity NE. Note: The front panel will display only the first 22 characters.
	Provides software versions running on the controller. These versions includethe versions for the application code, the boot block, the display, the defaults file, and the web pages.
Date	Present Date of the controller on-board real-time clock using the configuredDate format.
Time	Present time of the controller on-board real-time clock using the configuredtime format.
	Present temperature of the controller on-board temperature sensor displayedin the configured temperature format.

Table 17 System Info Status

Control/Operations

The following are the system control and operation functions that can be performed from the front panel. These operations are generally used in post installation and maintenance modes.

Alarm Cut-Off	Temporarily cuts-off (Turns off) the on-bard audible alarm.
Start Lamp Test	Temporarily illuminates all status indicators of attached rectifiers, distribution monitoring an
	control modules and the system controller.
	Provides the ability to restart All system serial controlled rectifiers and/or converters at once.
Restart Devices	Provides the ability to individually reset only rectifiers or converters at a time. This operation
	does not affect rectifiers, converters, and other system devices that are already functioning.
Clear Events	Used to clear momentary events or alarms. It clears the following system alarms: Check
	Battery, Reserve Time Low, Battery Voltage Imbalance
Uninstall Equipment	Clears alarms related to the removal of a system component such as a rectifier, converter, thermal probe, or voltage monitoring module. Running this command allows the system
Offinstall Equipment	controller to retake inventory of using equipment.
	Solid one to retain inventory or doing equipment.
	This area of the menus system can be used to clear the various items that the controller
	maintains history records. Once cleared the controller begins to keep history of new events.
	Alarm History Clears only alarm event history.
	BD History Clear only BD network access history.
	Rectifier History Clears only rectifier event history.
Clear History	Converter History Clears only converter event history.
	Boost History Clears only Boost event history.
	Local Port History Clears only local port access event history. Modem History Clears only Modem port access event history.
	Modem History Clears only Modem port access event history. Network History Clears only network access history.
	All History Single command to clear all history.
	Single command to clear air history.
Clear Statistics	This area of the menus system can be used to clear the various items that the controller maintains statistical records. Once cleared the controller begins to keep new statistical data.
	Clear Basic Clears individually or as a group the Basic statistical data kept on Plant Load,
	the highest battery temperature, and ambient.
	Clear Trend Clears the trend data kept on the plant load.
	Clear BD Clears the Battery on Discharge (BD) statistics kept on the plant load and
	voltage during discharge.
Alarm Test	Provides ability to initiate an alarm test on a specific user selected output relayor all output
	relays. Alarm relays are asserted at the configured alarm interval.

Table 18 Control/Operations

Start Battery Test	Initiates the manual battery test feature. A stop battery test operation is displayed to interrupt the testing and return the unit to normal operation. The manual battery test utilizes the configured test duration and a system bus voltage threshold to represent the end of reserve.
Disconnects	Provides individual manual control of up to four Low Voltage Disconnects (LVBD, LVLD1-3) for maintenance purposes.
Enter Boost	Initiates the manual battery Boost feature. A stop battery Boost operation is displayed to interrupt the Boost operation mode and return the unit to normal operation.
Load Config Defaults	This operation allows a user to bring back all factory defaults with a single operation. Factory defaults are also custom configuration defaults that are available. Custom configurations may support multiple factory defaults. Use caution when applying this command. Previous configuration changes will be overwritten.
Reset Passwords	Resets user, super-user and administrator passwords back to standard defaults.

Table 18 Control/Operations (Continued)

History

This area of the menu system contains event history information. The controller works on a first record in first record out once the record size of a specific field is reached. The following system history logs are available:

Alarm History	Chronological view of the last 1000 alarms and events that have occurred since the last time the history log was cleared.
BD History	Chronological view of the last 30 battery on discharge (BD) events since the last time the history log was cleared.
Boost History	Chronological view of the last 16 times the system entered boost mode since the last time the history log was cleared.
Rectifier History	Chronological view of the last 256 rectifier alarms and events that have occurred since the last time the history log was cleared.
Local Port History	Chronological view of the last local terminal logins that have occurred since the last time the history log was cleared. The number of these events counts towards the total number of Modem, Network, PIN, and Local port events which can be up to 48 events.
Modem Port History	Chronological view of the last Modem port logins that have occurred since the last time the history log was cleared. The number of these events counts towards the total number of Modem, Network, PIN, and Local port events which can be up to 48 events.
PIN History	Chronological view of the last Front Panel access that required password entry. The number of these events counts towards the total number of Modem, Network, PIN, and Local port events which can be up to 48 events.
Network Port History	Chronological view of the last Network access events that have occurred since the last time the history log was cleared. The number of these events counts towards the total number of Modem, Network, PIN, and Local port events which can be up to 48 events.

Table 19 History

Configuration

The Configuration section of the menu system is where system operational parameters, system device information, and alarm thresholds are set-up and modified. Factory defaults are provided for the standard controller. Some defaults are dependent on the battery type. Consult Appendix E for default settings of different battery. Valve-Regulated Lead Acid (VRLA) batteries and default settings defined for the Standard configuration are assumed in this section. Customer specific configurations may be different. When there is doubt, contact OmniOn PowerTM technical support.

All items are field configurable. Modified settings are stored in non-volatile memory. Controllers require time to update sectors in flash memory for changes. Allow approximately a minute for the controller to accept and store modifications in non-volatile memory before removing power to the unit.

Float Settings

	Parameter sets the value that primary (rectifier) DC bus will be set and regulated.
Set Point	System Float Voltage set-point adjustable from -42.00V to -56.50V and +22.00V to +28.00V with a factory default of -54.00V and +27.24V for 48V and 24V VRLA power systems, respectively.
ISHVSD	This is an Independent High Voltage Shutdown threshold during the Float mode of operation that is sent to and stored in the rectifiers that is used by each rectifier for independent high voltage monitoring.
	The threshold can be set from -50.00V to -60.00V or +25.00 to +30.00V with a factory default setting of -58.50 and +29.25V for 48V and 24V systems, respectively.
Very High Voltage Major	This is the High Voltage Shutdown Alarm (HVSD) threshold for the primary DC bus that when it is reached the controller will send out the HV shutdown command to the serial rectifiers so that the offending rectifier will shut itself down.
	The threshold can be set from -50.00V to -60.00V or +25.74 to +31.75V with a factory default setting of -56.00 and +28.24V for 48V and 24V systems, respectively.
	This alarm indicates an abnormally high float output voltage (HFV) on the primary DC bus but the controller does not attempt to shut the offending unit down.
High Voltage Minor	The threshold can be set from -50.00V to -60.00V or +24.75 to +29.75V with a factory default setting of -55.50 and +27.74V for 48V and 24V systems, respectively.
BD (Battony on Discharge)	Primary DC bus threshold setting that determines when the system is determined to be operating either completely or partially on battery reserve.
(Battery on Discharge) Major	The threshold is set from -46.00V to - 55.00V or +23.00 to +28.00V. Has afactory default of -53.00V and +25.54V for 48V and 24V systems.
Very Low VoltageMajor	Primary DC bus alarm threshold used to indicate an imminent system shutdowndue to discharging batteries or a very low output voltage (VLV).
very Low voitageMajor	Threshold is set from -40.00V to- 51.00V or +20.00 to +25.50V. Has a factory default of - 46.00V and +23.00V for 48V and 24V systems.

Table 20 Float Settings Configuration

Shunt Monitors

The Pulsar Plus family of controllers utilize an RS485 serial communication link to external distribution monitoring and control boards for shunt measurements and contactor control. Up to eight external boards can be managed by the controller for shunt monitoring and contactor control. Thus, eight contactors can be assigned to one of four independent controls: LVBD, LVLD1, LVLD2, and LVLD3. These distribution monitoring and control boards are identified by setting an address ID at the board and then assigning appropriate operation Type at the controller. The available Types are: Battery, Load, and None. Shunt sizes for each assigned battery or load type must also be configured. All shunts are assumed to have a voltage rating of 50mV. The current rating of each shunt is programmable between 0 to 9999A. Systems shipped with the controllers are appropriately pre-configured in the factory for the right shunt values and assignments.

Plant Shunt Type	Definition type for the on-board shunt used for systems that are designed with a single shunt to monitor load or battery current. The on-board shunt monitor may be configured as "NONE", "BATTERY", or "LOAD". The factory default is BATTERY.
Plant Shunt Rating	Current rating of the shunt being measured by the on-board shunt circuitry Shunts are assumed to have a 50mV rating. The rating can be set from 0A to 9999A with a factory default setting of 600A.
ID1-8	The operation Type of each shunt monitoring circuit on system distribution boards 1-8 must be assigned based upon actual system implementation. The operational Type may be: None (For no shunt), Battery (Monitoring battery currents), and Load (for load currents).
ID1-8 Rating	The current rating of each shunt being monitored by the system distribution boards 1-8 must be configured based upon actual system implementation. All shunts are assumed to be 50mV. The current rating may be from 0-9999 Amps. The factory default is 600A for load shunts and 800A for the battery.

Table 21 Shunt Monitors Configuration

Defaults			
The controller is factory configured with:			
ID1	Type: Battery	Shunt: 300A	
ID2	Type: None	Shunt: 300A	
ID3	Type: None	Shunt: 600A	
ID4	Type: None	Shunt: 600A	
ID5	Type: None	Shunt: 600A	
ID6	Type: None	Shunt: 600A	
ID7	Type: None	Shunt: 600A	
ID8	Type: None	Shunt: 600A	
Note: Dependin	IDs defined as None will have no currents displayed and shunt configuration has no affect. Note: Depending on the system and controller configuration for that system the values of the total load current (Iload) are calculated differently. The following table describes the different calculations for total load current.		
All Loads Monit	as "Load" m Shunt Type	bled, the All Load Monitor feature automatically links all Shunt Monitors configured nonitors to the system total load. This feature isoperational only when the Plant is configured as NONE. default is Disabled.	

Table 21 Shunt Monitors Configuration

Shunt Type	System Configuration	Controller Operation
Battery	Shunt input is connected to a centralizedbattery shunt located in the system. All battery current flows through this shunt to and from the system batteries. Systemmay or may not have Shunt Monitors configured.	Controller reports the following: I _{Load} = Σ I _{Rect} + I _{plantshunt} I _{battery} = I _{plantshunt} Where I _{plantshunt} is negative for current into the battery and positive for current out of the battery. If there are shunt monitor cards also installed: Cards configured as monitoring a "Load" shunt do not affect the total ILoad but havetheir values individually displayed. Cards configured as monitoring a "Battery" shunt do not contribute to total battery current (I _{battery}) but have their values individually displayed. All battery management functions remain available.

Table 22 Shunt Type Configuration

Shunt Type	System Configuration	Controller Operation
		Controller reports the following: I_Load = I_plantshunt I_battery = Unavailable
LOAD	Shunt input is connected to a centralized load shunt located in the system. The total system Load current flows through this shunt to the load equipment. System may or may not have Shunt Monitors configured.	 If there are shunt monitor cards also installed: Cards configured as monitoring a "Load" shunt do not affect the total ILoad but havetheir value individually displayed. If there are cards configured as monitoringa "Battery" shunt it is assumed that all battery current flows through these shuntsto and from the system batteries. These values are summed to the total battery current (I_{battery}) and override the previous equation for I_{battery}. Thus, the new I_{battery} is I_{battery} = Σ I_{battery shunt monitors} All battery management features are be available.
NONE	Shunt input may or may not be connected to a shunt located in the system. System has Shunt Monitors configured in the system.	 Controller reports the following: I_{Load} = Σ I_{Rect} I_{battery} = Unavailable If cards are configured to monitor "Battery" shunts, it is assumed that all battery current flows through these shuntsto and from the system batteries and is summed to be the total battery current (I_{battery}). Cards configured as monitoring a "Load" shunt do not affect the total I_{Load} but havetheir values individually displayed. Thus, the controller reports the following: I_{battery} = Σ I_{battery} shunt monitors I_{Load} = Σ I_{Rect} + Σ I_{battery} shunt monitors Where I_{battery} shunt monitors is negative for current into the battery and positive for current out of the battery. Note: If there are no Shunt Monitorsconfigured as battery then:
	Shunt input may or may not be connected to a shunt located in the system. System has Shunt Monitors configured in the system and all system loads are monitored. And The new "All Load Monitored" featurehas been "Enabled".	 Cards configured to monitor "Battery" shunts are assumed to monitor all batterycurrent to and from the system batteries and are summed to the total battery current (I_{battery}). In addition, all individualbattery monitor values are displayed Cards configured as monitoring a "Load"shunt are summed to calculate the total I_{Load} and also have their individual valuesdisplayed. Thus, the controller reports the following: I_{battery} = Σ I_{battery shunt monitors} I_{Load} = Σ I_{Load shunt monitors} Note: If there are no Battery Shunt Monitorsconfigured but the total load monitored is enabled, then the total battery current is calculated as follows:

Table 22 Shunt Type Configuration

Rectifiers

	An alarm is automatically generated when the rectifier capacity On-line in the system falls below N+X based on the present system load. X is the desired number of rectifiers to check for redundancy. The factory default for this feature is Enabled and X=1.
Rectifier On infeshold	The system DC bus threshold that rectifiers placed into Standby will automatically be turned on. This value can be set between -40.00V and -51.00V and +20.00V to +25.00V with factory defaults set to -44.0V and +22.00V for 48V and 24V rectifiers, respectively.
	Provides the ability to disable or enable the capability of placing a rectifier into Standby operation through remote means such as the network, modem, or local terminal. The factory default for this feature is Disabled.
Sequencing	When enabled, provides the ability to hold off a user configured group ofrectifiers when appropriate contact closure is received, The feature is also called Group Standby. The factory default for this feature is Disabled.
	Adjustable from 30-100%. At 100% the rectifier will output its nameplate rating and truly act as constant power rectifiers. Settings below 100% will be current limited to that percentage of the rectifier's name plate current rating.

Table 23 Rectifiers Configuration

Batteries

Batteries			
	line type of batteries used in the system can loaded in the Standard controller:	be selected from the following battery types	
	• 12A100FT	• 12A150FT	
	• 12IR150/150LP	• 3A125-33L	
	• 3A95-21L	• 3A95-27L	
	• 3A95-33L	• 6A95-13L	
	• 6A95-15L	• IR30EC	
	IR40EC	• L54V63FTX	
	• NCX-125	• NCX-80	
Battery Type	NSB110FT	NSB170FT	
	NSB60FT	• SE48S63	
	• SE48S80	• TEL12-105F	
	 Generic VRLA (Valve Regulated acid) Generic Li-LMP (Lithium Metal Polymer) 	Generic FLOODED (flooded lead Lead Acid) Generic NiCd (Nickel Cadmium)	
	Once selected the user has the opportunity all battery Type related features. Parameters compensation parameters, etc. are automat The system factory default is Valve-Reg.		
	Capacity of an individual battery string in the system battery capacity. This value has to be		
String Capacity	rating to 1.75V at an 8-hr discharge rate.	y models. The value configured should be the	
	The available range is 0-9999 AH. The system factory default is 0 AH corresponding to the Generic Valve-Reg.		
Battery Strings	The total number of battery string installed purposes and initial reserve time calculation	in the system entered by the user for inventory ns. This value is automatically configured when ge is 0-16. The Infinity NE system factory default is	
Cells Per String	The number of basic battery cells that make	up a battery string. y default of 24 and 12 cells for -48Vand +24V	

End of Dchrg	The user defined system bus voltage at which the batteries are considered to beat the end of their reserve capability for manual battery testing (End of Discharge). This end-of-discharge voltage is used for automatic and opportunistic reserve time calculations. This setting has a range of -40.25V to -48.75V and 19.25V to +25.35V +21.00with factory default of -42.00V and +21.00V for 48V and 24V systems, respectively.
Battery Temp Management*	This section includes all the parameters required for thermal management of the batteries. Parameters include the ability to enable/disable thermal compensation for high and low temperatures and set the slope decrease and increase rates, respectively. There is also a High Temperature alarm threshold, High Temperature Disconnect feature. Thermal compensation features are factory defaulted Enabled for Valve-Reg batteries.
Batt Test*	This section includes all the parameters required for battery testing through manual or automatic means. Configuration for manual test duration and the system test end-voltage for manual battery test are here along with the interval, start date, start time, time from last battery on discharge BD, and enable/disable for periodic battery test. The rectifier voltage during battery discharge testing and system reserve time low alarm threshold are also available. Automatic battery testing is factory disabled.
Recharge Amp Limit	Enable or disable battery recharge limiting and set recharge current limit. Whenenabled, the controller will regulate the current into the batteries to be below the setting. Recharge current limit is factory Disabled. The current limit range is 5 to 1000A and has a factory default of 50A for Valve-Reg batteries.
Voltage Imbal	User defined voltage threshold for a mid-string voltage imbalance alarm. Range 1.4 - 3.0 Volts. The factory default is 1.7V for Valve-Reg batteries. Thisalarm is only generated after batteries have been sitting on float for a minimum of 12 hours and the total battery current is less than 3A.

Table 24 Batteries Configuration

Contactors

The Pulsar Plus family of controllers utilize distribution monitoring and control boards to control contactors. These boards include the ES772, QS871, and the NE872 modules. Each of the boards in the system must be assigned to LVD contactor control by appropriately configuring a unique board ID on the board and associating it to a specific contactor function at the controller.

		Associates the ID numbers set on the distribution monitoring boards (NE872/QS871) to one of four independent set of contactor controls.	
10	01-6	These contactor controls are: LVBD (Low Voltage Battery Disconnect), LVLD1 (Low Voltage Load Disconnect 1), LVLD2 (Low Voltage Load Disconnect 2), and LVLD3 (Low Voltage Load Disconnect 3).	

Table 25 Contactors Configuration

st See Appendix C for detailed descriptions of the Thermal Compensation and Battery Test features and parameters.

The controller has assigned each unique board ID number as follows: ID1 to LVBD, ID2 to LVLD1, ID3 to LVLD2, and ID4 to LVLD3. Note: the text description used for the disconnect such as "LVLD1" can be renamed using the remote interfaces. Each of these assignments has its own unique programmable parameters described next. ID5-ID8 have been assigned to NONE. Selecting NONE removes the ability of that particular distribution control board to control and external LVD.

Disconnects

This section of the configuration menu contains the parameters associated with the individual function assignments made in the previous section. Each LVD type (LVBD and LVLD1-3) can individually be enabled or disabled. Only the LVBD and LVLD1 are Enabled from the factory. The LVD's disconnect and reconnect method of operation used by the controller can be configured for each assignment. The method of disconnect or reconnect can be based on the traditional means of reaching a system bus voltage threshold (Voltage) or based on both reaching the system bus voltage threshold and an elapsed time from once the system has been placed on discharge (BD) and at least two or more rectifiers are reporting AC failures (Voltage/Time). The same Voltage and Voltage/Time mode of operation can also be selected for reconnecting LVDs. In this case the elapsed time configured is the time from once the reconnect voltage threshold has been reached. Note: selecting None for a reconnect mode will require manual intervention to shut the contactor. Selecting None for the disconnect mode will not allow a LVD to open. The controller has factory defaults of the following:

LVBD (Enabled)	Disconnect Mode (Voltage) ; Range: Voltage, Voltage/Time, None Disconnect Voltage (-42.0V/+21.0V) ; Range:-39.0 to -50.0V/+19.5 to +25.0V Time Delay (0 min) ; Range: 0-300min Reconnect Mode (Voltage) ; Range: Voltage, Voltage/Time, None Reconnect Voltage (-48.0V/+22.2V) ; Range:-39.0 to -55.0V/+19.5 to +27.0V Time Delay (0 sec) ; Range: 0-300sec
LVLD1 (Enabled)	Disconnect Mode (Voltage); Range: Voltage, Voltage/Time, None Disconnect Voltage (-42.0V/+21.0V); Range:-39.0 to -50.0V/+19.5 to +25.0V Time Delay (0 min); Range: 0-300min Reconnect Mode (Voltage); Range: Voltage, Voltage/Time, None Reconnect Voltage (-44.0V/+22.0V); Range: 39.0 to -55.0V/+19.5 to +27.0V Time Delay (0 sec); Range: 0-300sec
LVLD2 (Disabled)	Disconnect Mode (Voltage); Range: Voltage, Voltage/Time, None Disconnect Voltage (-42.0V/+21.0V); Range:-39.0 to -50.0V/+19.5 to +25.0V Time Delay (0 min); Range: 0-300min Reconnect Mode (Voltage/Time); Range: Voltage, Voltage/Time, None Reconnect Voltage (-44.0V/+22.0V); Range: 39.0 to -55.0V/+19.5 to +27.0V Time Delay (30 sec); Range: 0-300sec
LVLD3 (Disabled)	Disconnect Mode (Voltage); Range: Voltage, Voltage/Time, None Disconnect Voltage (-42.0V/+21.0V); Range:-39.0 to -50.0V/+19.5 to +25.0V Time Delay (0 min); Range: 0-300min Reconnect Mode (Voltage); Range: Voltage, Voltage/Time, None Reconnect Voltage (-44.0V/+22.0V); Range: 39.0 to -55.0V/+19.5 to +27.0V Time Delay (0 sec); Range: 0-300sec

Table 26 Disconnects Configuration

Imminent Shutdown Alarm	When enabled, the Imminent Shutdown Alarm is generated prior to opening the LVBD. Once the LVBD threshold has been reached, the alarm is generated. The alarm is issued 15 seconds prior to opening the contactor to provide an indication that system shutdown is imminent due to a system battery disconnect. The alarm is based on the configured LVBD battery disconnect threshold. The factory default for this feature is Disabled.
Remote Emergency Power Off	If enabled, the remote Emergency Power Off (EPO) feature allows the controller to detect the occurrence of a contact closure between J3.5 and J.10 and force open all battery contactors in the system. The battery contactor will open five seconds after the contact has been asserted. Once the contact is removed, the battery contactor will be re-asserted to its previous operational state. The factory default for this feature is Enabled.

Table 26 Disconnects Configuration

Converters

Set-Point	Parameter sets the value that secondary (converter) DC bus voltage will be set and regulated. The converter output voltage set-point is adjustable from -46.00V to -54.5V and +23.0V to +27.2V with a factory default of -52.0V and +26.0V for 48V and 24V converter outputs, respectively.
HV Shutdown	This is an Independent High Voltage Shutdown threshold that is sent to and stored in the converters that is used by each converter for independent high voltage monitoring. The threshold can be set from -50.0V to -60.0V or +25.0 to +30.0V with a factory default setting of -58.0V and +29.0V for 48V and 24V converter outputs, respectively.
Low Voltage Disconnect	Enable or Disable for a feature that allows attached converters to be placedinto Standby once an input voltage threshold is reached. The factory default for this feature is Disabled.

Table 27 Converters Configuration

Reconnect	respectively. Converter input voltage threshold to be used to return all converters from Standby to On. The converter reconnect threshold is adjustable from -44.0V to -54.0V and +22.0V to +27.0V with a factory default of -52.0V and +26.0V for 24V and 48V output converters, respectively. Has the ability to set similar secondary DC bus level alarms as found with the rectifiers and the primary DC bus. This includes Very High Major, High Minor, and Very Low voltage. Very High Major This is the High Voltage Shutdown Alarm (HVSD) threshold for the secondary DC bus that when it is reached the controller will send out the HV shutdown command to the serial converters so that the offending converter will shut itself down. The threshold can be set from -50.0V to -
Voltage Alarms	60.0V or +25.0 to +30.0V with a factory default setting of -56.00 and +28.5V for 48V and 24V converter outputs, respectively. High Major This alarm indicates an abnormally high output voltage on the secondary DC bus. The controller does not attempt to shut the offending unit down. The threshold can be set from -48.0V to -60.0V or +24.0 to +30.0V with a factory default setting of -54.00 and +27.0V for 48V and 24V for converter outputs, respectively. Very Low Secondary DC bus alarm threshold used to indicate something dragging the bus to an undesired voltage level or an incorrect setting. The threshold can be set from -40.0V to -54.0V or +20.0 to +27.0V with a factory default setting of - 46.0V and +23.0V for 48V and 24V for converter outputs, respectively.

Table 27 Converters Configuration

Boost

The Boost function allows battery charging to be expedited by raising the system voltage to Boost level for a set time. The following boost mode parameters are set in this area of the menu system:

Set Point	Primary DC bus voltage set-point during the Boost mode of operation. Boost (set point) is adjustable from -48.00V to -58.00V and 22.00 to 30.00V in0.1V increments. The factory default setting is -54.00V and 27.24V.
ISHVSD	This is an Independent High Voltage Shutdown threshold during the Boost mode of operation that is sent to and stored in the rectifiers that is used by each rectifier for independent high voltage monitoring. The threshold can be set from -52.00V to -60.00V or +26.00 to +30.00V with a factory default setting of -58.50 and +29.25V for 48V and 24V systems, respectively.

Table 28 Boost Configuration

	Has the ability to set similar DC bus level alarms during Boost as found with theFloat mode of operation. This includes Very High Major, High Minor, and BD.
	Very High Major This is the High Voltage Shutdown Alarm (HVSD) threshold for the primary DC bus during Boost that when it is reached the controller will send out the HV shutdown command to the serial rectifiers so that the offending rectifier will shut itself down. The threshold can be set from -50.00V to -60.00V or +25.75to +31.75V with a factory default setting of -56.00 and +28.24V for 48V and 24V systems, respectively.
Voltage Alarms	High Minor This alarm indicates an abnormally high output voltage on the secondary DC bus during Boost. The controller does not attempt to shut the offending unit down. The threshold can be set from -50.00V to -60.00V or +25.75 to +31.75V with a factory default setting of -55.50 and +27.74V for 48V and 24V forsystems, respectively.
	BD Primary DC bus threshold setting used during the Boost mode of operationthat determines when the system is determined to be operating either completely or partially on battery reserve.
	The threshold can be set from -46.00V to- 55.00V or +23.00 to +28.00V with a factory default
	setting of -53.00V and +25.54V for 48V and 24V systems, respectively.
Max Duration	Defines the maximum time duration the system can remain in the Boost mode of operation. Value set from 1 to 80 hours. The factory default setting is 5 hours.
Automatic	Enables or Disables the automatic boost feature. Boost may be configured to use a "Timed" or "Current" based algorithm. When set to Time, Boost will utilize a multiplication factor of the actual time of the last BD. When set to Current, Boost will end once the monitored battery current reaches the programmed threshold. These values can be modified through the remote interfaces.
	The factory default setting for Automatic Boost is Disabled.

Table 28 Boost Configuration (continued)

System Settings

Display Contrast	Allows display back-light intensity to be adjusted for contrast in local ambientlight. Factory default is 50%.
Date	Sets system date and format. The format for date can be selected from: mm/dd/yyyy, dd/mm/yyyy, yyyy/mm/dd, mm-dd-yyyy, yyyy-mm-dd, dd-mm-yyyy, mm/dd/yy, yy/mm/dd, dd/mm/yy, mm-dd-yy, yy-mm-dd, or dd-mm-yy and the format for time can be 12HR/24HR format. The factory default is Date:mm/dd/yyyy and Time: 24HR.
Time	Sets system date and format. The format for date can be selected from: mm/dd/yyyy, dd/mm/yyyy, yyyy/mm/dd, mm-dd-yyyy, yyyy-mm-dd, dd-mm-yyyy, mm/dd/yy, yy/mm/dd, dd/mm/yy, mm-dd-yy, yy-mm-dd, or dd-mm-yy and the format for time can be 12HR/24HR format. The factory default is Date:mm/dd/yyyy and Time: 24HR.
Daylight Savings	Enable or disable. The factory default is Enabled.
Display T Units	°C or °F. The factory default is °C.
Languages	Allows the language support to be set between English and Other. Other is asecondary language such as Spanish or French.
High Ambient T	High ambient temperature alarm threshold that can be set from 30°C to 75°C. This temperature is measured on-board the controller. The factory default setting is 75°C.
Low Ambient T	Low ambient temperature alarm threshold that can be set from -40°C to 10°C. This temperature is measured on-board the controller. The factory default setting is -40°C.

Table 29 System Settings Configuration

Communication Ports

Menus for configuring the following communication parameters:

	Sets the RS-232 asynchronous serial communication port for either Localterminal or Modem application. Factory default is Local.
Local Port Settings	Provides the ability to Enable or Disable Write access to the controller, the ability to change system settings through the SNMP management or local port. The factory default setting is enabled. The baud rate, number of data bits, parity, number of stop bits, and flow control parameters for the port is also configurable. These parameters have been factory set to 9600, 8, none, 1, none, respectively.

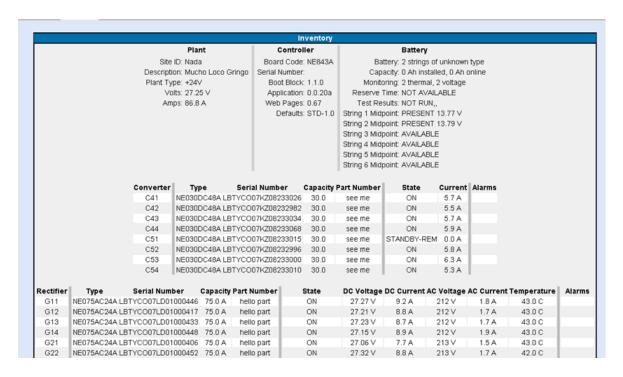
Table 30 Communication Ports Configuration

	1
Modem Port Settings	Provides the ability to Enable or disable Write access, the ability to change system settings through the Modem. The factory default setting is Enabled. The baud rate, number of data bits, parity, number of stop bits, and flow control parameters for the port is also configurable. Note: the initialization string of the external MODEM must be set in the controller. Factory default forthe string is AT&FEV&C1S0=0H. This string can be modified by utilizing EasyView or T1.317 commands through a local terminal connection. Consult technical field support if further assistance is required. Thee number of rings to be detected by the modem before it answers (Rings toAnswer) can be set from 1 to 9. The factory default setting is 1.
Network Settings	The access type and the Dynamic IP addressing mode are set in this section. The Dynamic IP address mode sets the IP address operation mode of the Ethernet port on the controller. This port has been set to act in DHCP (Dynamic Host Configuration Protocol) Client mode. This mode of operation assumes that the network will automatically provide an IP address to the controller. The port may also be configured to use a "Static" IP address which is configured by the user. The Static and Client modes of operation allow the controller's port to be configured to operate plugged into the network. It can also be used in a "Server" mode to provide Craft port functionality. In this Server mode the controller default IP address is 192.168.2.1 (destination address in a browser). Note: Once any Network parameters are changed, a Reboot Required alarm will activate. The user must then wait 2 minutes for the changes to be saved, then the controller must be re-booted via Menu path: Menu →Control/Oper →Reboot Controller or by removing & restoring power. In addition, there is the ability to Enable or disable Write access for someone who is attached to the Craft port. The factory default setting is Enabled.

Table 30 Communication Ports Configuration (Continued)

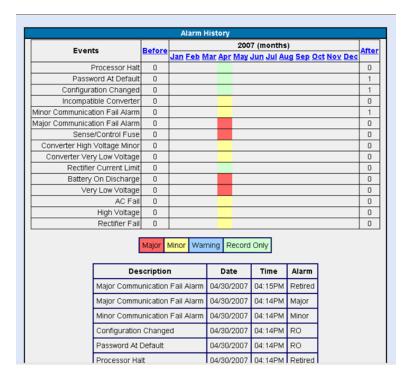
10/100 Base-T Port

An introduction to the main screens of the web interface is provided in Section 4. The Pulsar Plus family of controllers support network access to almost all controller functions including all voltage and temperature readings, current alarms, and alarm history. It supports a web-based user interface using standard browsers It can provide plant alarm and control information to a distributed or centralized Network Operation Center (NOC) using the Simple Network Management Protocol (SNMP) or the Transaction Machine Language (TL1), which allow the controller to provide alarm information to the NOC for integrated network management. The controller provides network access and control capability for users under the HTTP, HTTPS, Telnet, FTP, SMTP, SNMP, SHH and TL1 protocols. The typical protocol functions are as follows:

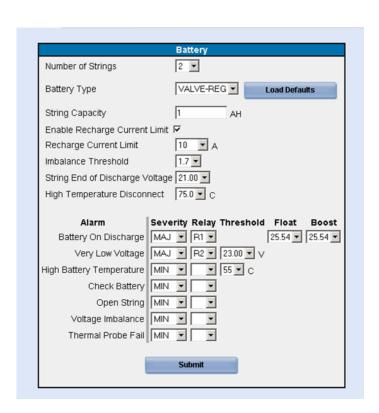


HTTP

HTTP (hypertext transfer protocol) is the foundation protocol of the World Wide Web (www) and can be used in any client-server application involving hypertext. HTTP makes use of TCP (transmission control protocol) for client to server connection and IP (internet protocol) for internetworking. The controller's standard HTTP protocol web pages provide integrated site information with an enhanced graphical user interface. The on-board HTTP web pages server is password protected for read/write privilege as mention in Section 4. Further access restrictions can be implemented using the software read/write disable capabilities configured through the front panel. The controller has a configurable timeout for connections that remain idle more than a user-programmed time period.


The best way to learn the web pages is to go through each tab and look at the features. The high level tabs were described in Section 4. There is much user friendly information and configuration available within these tabs.

Selecting **Inventory** in the **Reports** tab produces a screen similar to the following:



Obtaining a chronological view of the alarm events is also available by selecting **Alarm History** from the reports screen produces the following page.

Selecting the Settings tab produces the web page from which configuration for all individual items can be performed as mentioned in Section 4. Selecting **Battery** in the **Settings** screen produces the following web page:

TELNET

Telnet provides remote log-on capability to a computer or server. The terminal to terminal connection with Telnet is based on a TCP connection for traffic between user and server. Once login is established; the controller will support this session until the "exit" command is received or the idle timeout limit is reached. A command line interface is used to view and configure the controller's features and thresholds. Backup, restore, and upgrade procedures may also be performed.

SNMP

SNMP (simple network management protocol) is the most dominant network management standard. It allows communication and control via open standards host systems for centralized management of multiple plants. A standard MIB for the controller is available by contacting OmniOn Power™ Technical Support at **omnionpower.com** Up to four SNMP alarm trap destinations can be programmed using the Network Settings link found in Settings Tab of the web pages. Alarms then can be assigned under Alarm Notification also found in the Settings tab of the web pages. SNMP is more fully described in the Appendix.

SMTP

SMTP (simple mail transfer protocol) provides a basic electronic email facility. It provides a mechanism for transferring messages among separate hosts and browser applications. The protocol is used in Gateway for sending alarm messages and alerts through email.

FTP

FTP (file transfer protocol) is used to send files from one system to another under user commands. The protocol is used with the controller for downloading files and upgrades through a TCP connection. Application software, default configuration file, and web pages are uploaded to the controller using FTP.

TI 1

TL1 is the transaction language command interface that allows direct communication with a central monitoring system and is defined by Telcordia for various equipment. It allows communication and control via open standards host systems for centralized management of multiple plants. The protocol is typically used over a X.25 network for alarm reporting.

Optional Devices and Modules

One-Wire Peripheral Devices

QS873A Voltage/Thermal Probes

The QS873A Voltage/Thermal Probes (VT-Probes) are used to measure battery temperatures for slope thermal compensation, and to provide mid-string voltages to the ES77I for battery voltage imbalance detection. Each of these weatherized assemblies monitor their respective contact temperature and converts the measurements into serial data which is then read by the system controller using Maxim's industry standard I-Wire® bus. Several QS873A probes can be connected in a serial fashion since the data is received through digital means. The Pulsar Plus family of controllers can handle up to 16 QS873A VT-probes. This allows multiple strings and or multiple batteries within a string to be monitored for temperature. As mentioned, these probes are required for the battery string voltage imbalance feature since they route the mid-string voltage to the system controller via the ES771A remote mid-string voltage monitoring modules. All probes are provided with a PTC device to protect against accidental short circuit during voltage measurements.

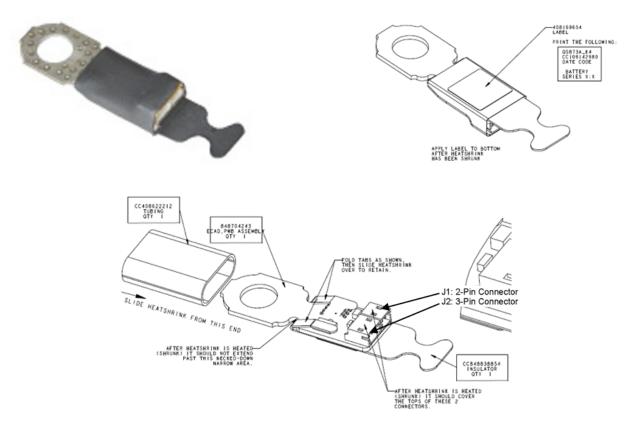
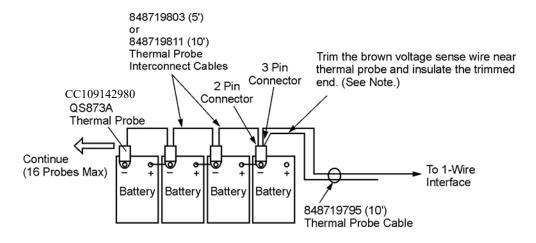


Figure 11: QS873A Voltage/Thermal Probe (CC109142980 VT-Probe)

Following is a brief description of the interfaces on the QS873A VT-Probe depicted above.

J2


3-position connector connects the VT-Probe to the 1-Wire interface through cable 848719795. It may also connect directly to the ES771A with (CC848791517, 2.5') or (848719829, 10') or other VT-Probes in daisy chain fashion using either the (848719803, 5') or the (848719811, 10') cable.

J1

position connector serves to connect the VT-Probe to J2 on other VT-Probes in a daisy-chain fashion described above.

Application of QS873 VT Probes

QS873 VT Probes can be used with or without mid-string voltage monitoring. Only one probe is required to allow the battery slope thermal compensation function to be utilized. Additional probes for individual battery or multiple string monitoring can be added as desired. The highest temperature measured from all the probes is utilized by the controller. Although many systems come with the probes factory installed, probes can be added or replaced in the field. The following figure depicts monitoring all batteries in a single string without the use mid-string voltage monitors. Actual cables and connectivity may depend on true system Layout.

Note: 848719795, 848719803 and 848719811 come with a discrete brown wire for Battery Voltage Sense. When ES771A Modules are NOT used, trim and insulate this wire.

Figure 12: VT-Probe Connections To Infinity NE

Following are basic steps when installing the temperature probes for Thermal Compensation without Voltage Monitoring.

VT-Probe Connect to Controller				
Step	Action			
1	The QS873A weatherized VT-Probe is provided with 2-pin and 3-pin receptacles and a 1/4-inch ring terminal. Insert the RJ-45 end of the 848719795 wire set into the P5- SYS AUX PORT on the controller			
2	Using voltage monitoring now or in the future? No - Cut the brown voltage sense wire on the 848719795 at the 3-pin connector. Yes - Insulate the end of the wire and secure it in the system for future use.			

VT-Prol	be Connect to Controller				
Step	Action				
3	Insert the 3-pin connector end of the cable into the receptacle on the VT-Probe closest to the controller.				
	Place the first probe to the negative battery post as shown in figure.				
4	Mount on top of power lug (as shown) Do not mount beneath power lug				
5	The controller automatically recognizes the VT-probes. The number of registered temperature probes and the highest battery temperature monitored may be checked from the front panel by scrolling down the menu at Menu→Status→Batteries . The fields are "Num Temp Probes ()" and Highest Temp () where () contains the number of devices communicating in the system as well as the highest battery temperature.				
6	Connect either the 848719803 (5-ft) or the 848719811 (10-ft) cable to the 2-position receptacle of the first probe and to the 3-position receptacle of another probe. Verify the number of probes (2) registered with the controller with command: Menu-Status-Batteries-NUM TEMP PROBES (2)				
7	Repeat Step 7 until all probes are installed.				
8	The controller is now able to make thermal measurements in performing Slope ThermalCompensation (STC). To enable or verify that STC is active go to Menu→Configuration→Batteries→Battery Temp Management and select TEMP COMP andverify that the feature Temperature Comp is Enabled. If not, configure and save it appropriately. Additional parameters associated with slope thermal compensation may be set on the controller to customize this feature.				

ES771A Remote Mid-String Voltage Monitor Module

The ES771A remote mid-string voltage monitoring module is used to measure the mid-string voltages of up to three strings of batteries. This unit utilizes an appropriate QS873A VT-Probe connection to obtain the voltage for measurement. It then serially transmits the appropriate information to the system controller which performs the voltage imbalance detection feature. It also serves as interface that transmits the thermal data from the VT-Probes for slope-thermal compensation and other battery management features. As with the QS873A VT probes, ES771A units also utilize Maxim's industry standard 1-Wire® bus. Thus, multiple ES771A devices can be used and placed in a daisy chain fashion along with the QS873A VT probes. The number of Mid-string voltage modules actively hooked to batteries and being monitored by the system controller to batteries is displayed under Batteries in the Status menu. Note: VT-Probes must be connected to the batteries in order for the ES771 to be recognized.

The Pulsar Plus family of controllers can monitor up to six ES771A modules. Each ES771A module is individually addressed so that specific mid-string voltages can be displayed and identified. A seven-position rotary ID switch located on the unit must be set to a unique address number otherwise an ID conflict alarm will be generated. Units are shipped out of the factory with a default ID setting of "one". If additional units are to be in the system the ID must be reconfigured. Note: there are systems that are shipped with ES771A units installed and with proper configuration.

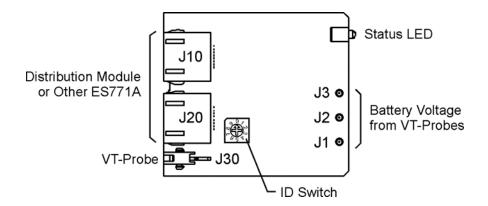


Figure 13: ES771A Remote Voltage Monitor Module

Following is a brief description of the interfaces on the ES771A Mid-String Voltage Monitor depicted above.

J10, J20

RJ-45 receptacles that connect the ES771A to other ES771As or the 1-Wire interface port of the controller or system provided 1-wire interface. Typical cables utilized are the (CC848791500, 4") or (848652947, 10') cable.

J30

Connects the ES771A to the first QS873A VT-Probes using either the (CC848791517, 2.5') or the (848719829', 10') cables.

J1, J2, J3

Snap-fit connectors for the mid-string voltage signal wire (Brown) from the VT-Probes. Note that the Brown lead of only QS873A probes connected to the electrical center of a monitored battery string can be connected here.

ID Switch

A seven-position rotary ID switch used by the controller to uniquely identify each ES771A in the system. A setting of "0" produces and invalid ID alarm. Valid ID settings are from 1 through 6. Units shipped from the factory have a factory default ID setting of "one".

Status LED

The module illuminates its green LED when plugged into the 1-wire network and with the VT-probe attached to negative battery terminal of the mid-string voltage. The LED will illuminate red when the controller determines that one or more of the strings from the unit has exceeded the Mid-String Voltage threshold and time considerations.

Application of ES771A Modules with QS873 VT Probes

ES771A modules require the use of QS873 VT Probes in order to activate the mid-string voltage monitoring feature in the controller. One VT probe is required for each mid-string voltage being monitored. Additional VT probes can be added for individual battery temperature measurement. It is up to the end-user to determine the number of battery temperature probes or voltage modules other applications may require. The highest temperature measured from all installed VT probes is utilized by the controller for slope thermal compensation. Many factory built systems come with the ES771A modules and QS873A VT probes factory installed, ES771A modules can be added or replaced in the field as necessary. The following depicts a typical configuration where four battery strings are being monitored with the required minimum VT probes. The middle battery in each string must be used when both the voltage imbalance and thermal compensation features are desired. This is one configuration using the ES771A. Systems may be configured differently. Consult technical field support if questions or concern arise

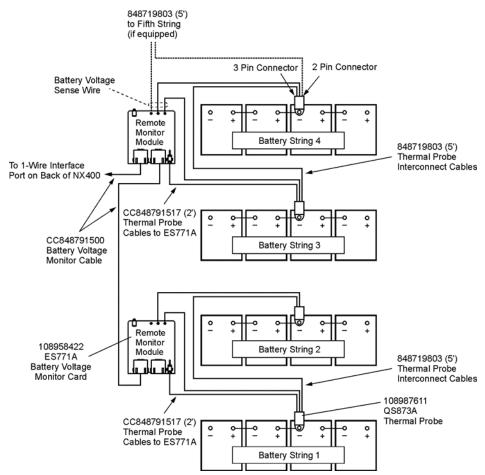


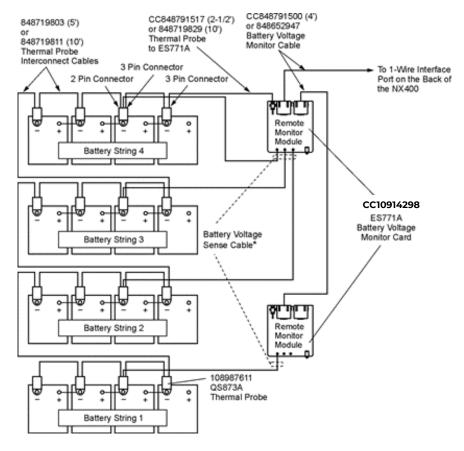
Figure 14: Four-String System Monitored For Imbalance With One VT Probe Per String

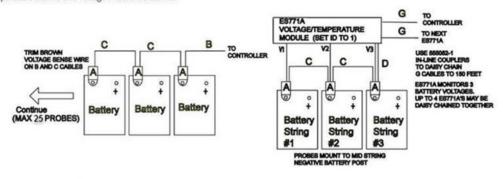
Voltage Imbalance Mid-String Monitoring

Step	Action for Voltage Imbalance Mid-String Monitoring
1	Insert one RJ-45 end of the 848652947 wire set into the P5-SYS AUX PORT on the controller and the other end to the first ES771A Remote Voltage Monitor module.
2	Follow the steps for installing a probe described in the previous section to attach a VT probe tothe negative post located at the center of the string as depicted in 14. Do not cut the brown wire.
3	Dress and attach the snap fit connector on the brown wire to the appropriate snap fit pin on the ES771A (J1-J3). Note: exercise care when attaching the battery voltage sense wire onto the J1, J2, and J3 pins of the ES771A pins. These push-on clips can be deformed if excessive force at an incorrect angle of insertion resulting in a non-optimum connection. The contact must not be bent more than 10 degrees.
4	Verify that the controller automatically registers the number of ES771A modules (1) at the front panel location: Menu→Status→Batteries→Num Mid-String V Note: Modules will only be recognized when there is actual potential applied through the VT probe to the ES771 module.

Step	Action for Voltage Imbalance Mid-String Monitoring
	Connect another ES771A to the controller by connecting an additional 848652947 wire set from the first
5	module to the RJ45 receptacle on the second module.
5	Verify the number of modules (2) registered with the controller with command:
	Menu→Status→Batteries→Num Mid-String V
6	Repeat Step 5 until all modules are installed. Verify that all probes are also automatically detected by the
6	controller at the front panel at: Menu→Status→Batteries→Num Temp Probes
7	If the LEDs on the module(s) are not illuminated green on or are red or if the number of registered modules
/	does not agree with the number used: Check integrity of all cable connections
	Issue the Clear Events command: Menu→Control/Operations→Clear Events . If the LEDs are still not lit green or
8	if the number of registered modules still does not agree, contact our technical support team.

The system is now set to monitor both voltage and temperatures to support the batter string voltage imbalance and slope thermal compensation features. Figure 15 depicts a reserve system where every battery in the string being monitored for temperature. Again, the highest temperature measured will be used for battery thermal management. Only one temperature probe is required for thermal compensation features




Figure 15: Same System Monitored For Imbalance With VT Probe On Every Battery

Following is a summary of the parts utilized in the 1-Wire management system

ORDERING CODE	DESCRIPTION		РНОТО
CC109142980	QS873A Thermal P	Probe (A)	_
CC848817024	10 ft wire set	(B: thermal probe to controller)	
CC109157434	20 ft wire set	(B:thermal probe to controller)	
CC848822560	1 ft wire set	(C: thermal probe to thermal probe)	
848719803	5 ft wire set	(C: thermal probe to thermal probe)	
CC848822321	10 ft wire set	(C: thermal probe to thermal probe)	
850027334	20 ft wire set	(C: thermal probe to thermal probe)	
108958422	ES771A Battery Vo	Itage Monitor Card	
CC848791517	2-1/2 ft wire set	(D: ES771A to thermal probe)	40
CC848797290	6 ft wire set	(D: ES771A to thermal probe)	
848719829	10 ft wire set	(D: ES771A to thermal probe)	
CC848791500	4 ft wire set	(G: ES771A to ES771A or controller)	
848652947	10 ft wire set	(G: ES771A to ES771A or controller)	
555052-1	In-Line Coupler		

Temperature/Voltage probes are needed for battery monitoring. They are connected to each battery or battery string to provide slope thermal compensation, temperature alarms and voltage imbalance alarms.

Temperature Measurement

Temperature and Voltage Measurement

NE872A Distribution Monitor and Control Module

Overview

The NE872A (CC109124780) allows the Pulsar Plus family of controllers to manage various distributions through serial communications in rectifier and converter based systems. The system controller will communicate over the GP RS485 bus to the NE872A and monitor associated alarms for open load or battery protectors, measure a single shunt configured as a load or battery shunt, monitor the DC bus voltage for back-up LVD functionality, and control and monitor a single load or battery latching LVD contactor. The board allows addressing for up to eight NE872As being installed in a system. Figure 17 shows the connections and interfaces for the NE872A.

Figure 16: NE872A Remote Distribution Module

Module Features

The NE872A module has the following features:

• Status LED: Tri-colored LED that illuminates according to following conditions:

LEDs (★ = On)				
Green	Amber	Red	Condition	
*			Normal	
	*	Minor Alarm		
		*	Major Alarm	
		Flashing	ng Communication Loss with Controller	
Flash (5s)		*	Manual Reconnect Command Accepting	

In addition, the following conditions will illuminate the LEDs as described below. This assumes the external disconnect switch is used to open and close the battery charging path to the batteries.

Tri-Color LVD Status			
Condition	Red	Green	Amber
Contactor Closed (Normal)		Χ	
Contactor Open (Normal)		X	
(Flash between -Each~1/2 sec on)	X	Λ	
Contactor Open Due To Remote LVD	V		V
(Flash between –Each~1/2 sec on)	X		X
ID not configured			Flashing
Alarm Inputs			
Open String			×
• FAJ alarms			
Fault Alarms			
Board Fault	X		
Contactor FAIL			
Lamp Test operation activated	Red 3 seconds On, Green 3 seconds On,		
(10 second operation)	Amber 3 seconds On, All off for 1 second		

Alarm Inputs:

The NE872A has been designed to allow it to be referenced to either VBus(-) or Vbus(+) so it can be used in both positive and negative grounded systems. All alarm or control inputs are either alarmed on an open or a closure to VBus (-) or provide its own signal return as described below:

- Remote LVD Open: The NE872 has the ability to accept a dry contact closure that will allow an external controller to force open the LVD independently from the system controller. The contactor will remain disconnected as long as the input is asserted. Upon de-asserting the input contactor closure, the NE872 will return the LVD to the a state dictated by the controller.
- **Fuse Alarm Major:** A contact closure to the non-grounded "Battery" side of the DC bus (- 48V/±24V) applied to this respective input, by default, produces an "Fuse Alarm Major" alarm by the controller.
- **Open String:** A contact closure to the non-grounded "Battery" side of the DC bus (-48V/±24V) applied to this respective input, by default, produces an "Open String" alarm by the controller.

External Shunt Monitoring Input:

The NE872 has the ability to monitor a single shunt mounted in the grounded or non-grounded side of the DC bus in a ±24V or -48V power system. The shunt must have a 50mV rating. Its current rating as well as its assignment to load or battery is configured at the controller. Three leads are used to monitor the shunt: Shunt+, Shunt-, and Shuntref. Shunt+ is the most positive side of the shunt input voltage as defined during a battery discharge. Shunt- is the most negative side of the shunt input voltage as defined during a battery discharge. Shuntref is the reference lead which must be attached to the DC side of the bus in which the shunt resides to properly reference the circuitry.

Contactor Management:

Controls and monitors one load or battery contactor. The contactor is of the magnetic latching type equipped with an auxiliary switch for status. The board is designed to drive both 24V and 48V rated contactors.

Reverse Battery Protection:

The NE872A will prevent the closure of the battery contactor when it senses batteries have been connected in reverse polarity. A Major alarm "Reversed Battery" is generated by the system controller.

Note: when a battery disconnect breaker is used to take battery strings off-line for servicing, care must be taken to ensure battery connections are correct at the disconnect switch.

Autonomous Backup LVD Function:

The NE872 monitors the system bus voltage to provide a backup for the Low Voltage Disconnect (LVD) function. In the event of a loss of communication between the NE872A due to a failed or removed controller, communication cable disconnect, etc. the configured disconnect and reconnect values assigned to a particular LVD function at the controller are used along with the boards internal measurement capability to control the LVD. These disconnect and reconnect threshold values are sent from the controller to each respective QS871A upon establishing initial communication.

8-Position Jumper: (J12; J11)

8-position jumper arrangement that uniquely identifies up to eight NE872 remote distribution monitor and control modules. Placing no jumper, ID position 0, is an invalid configuration. The Pulsar Plus family of controllers can address up to eight unique NE872s. Note: factory ordered systems are generally pre-configured and will have the jumpers appropriately set. Jumpers are arranged as shown

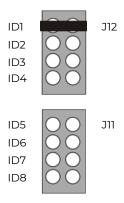


Figure 17: NE872A ID Jumper Settings

12-Position Jumper:

12-position jumper arrangement that configures the NES872 operate in a positive of negative battery plant. The jumper is selected so that all polarity sensitive items are selected at once by configuring one header.

Note: factory ordered systems are generally pre-configured and will have the jumpers appropriately set. The block jumper is arranged as shown.

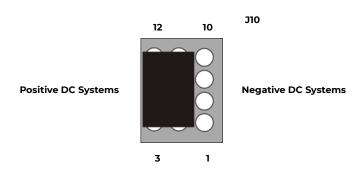


Figure 18: NE872A ID Jumper Settings

Module Connector Definitions

The NE872 module has six connectors used for board power, measurement, alarm inputs and various serial communications.

J1

Provides the connections to external distribution module's bus voltage and power, shunt inputs and reference, Fuse Alarm Major And Open String Inputs.

Table 33 NE872 J1 Signal Description				
Pin#	Signal Name	Signal Description		
1	FAJ	General purpose Fuse Alarm Major (FAJ) alarm input; Major alarm on closureto the non-grounded "Battery" side of the DC bus (-48V/±24V). Optional connection at terminal block TB1.		
2				
3	SHREF	Shunt Reference signal to be placed in the DC potential of which the shunt resides to reference the shunt measurement		
4	SHUNT+	Positive Battery Shunt input signal whose signal polarity is defined by the voltage on the shunt during battery discharge.		
5	OS	Open String (OS) alarm input for external battery disconnect switch; Alarms onclosure to the non-grounded "Battery" side of the DC bus (-48V/±24V). Optional connection at terminal block TB1.		
6	NE_CM	Infinity NE Common or Discharge Ground (DG) connection used for power and voltage monitoring. Connection made to NEcommon in the Infinity system.		
7	DB	Discharge Battery (BAT) power input connected to the Non-Grounded or "Battery" side of the DC bus. Also used as sense voltage for backup monitoring.		
8	SHUNT-	Negative Battery Shunt input signal whose signal polarity is defined by the voltage on the shunt during battery discharge		

Table 31 NE872 J1 Signal Description

J2

Provides the contactor management interface for control and LVD status.

Pin#	Signal Name	Signal Description			
1	LVD_COILA	Low Voltage Disconnect Coil Voltage A. "A" positive with respect to "B" to close contactor. Signal connected to one side of contactor coil.			
2	LVD_C Common of contactor status indicator. Connect signal to Common of themicro-switch contactor. Return reference for LVD auxiliary alarm status detection.				
3	LVD_NO	Normally Open contactor status monitor indicator. Closed to LVD_C when contactor is closed. Connect signal to NO pin of micro-switch of contactor.			
4	LVD_COILB	Low Voltage Disconnect Coil Voltage B. "B" positive with respect to "A" to open contactor. Signal connected to other side of contactor coil.			
5	BATT_SNS	Reserve Battery Sense Voltage input signal. Battery bus voltage used forreverse battery detection. Connection made to battery side of the battery contactor. Signal connection must not be used for Load contactors.			
6	LVD_NC	Normally Closed contactor status monitor. Closed to LVD_C when contactor is open. Connect signal to NC pin of micro- switch of Contactor.			

Table 32 NE872 J2 Signal Description

TB1

Terminal Block connection that provides field access to Fuse Alarm Major, Open String, and the Remote LVD input

Pin#	Signal Name	Signal Description
,	Remote LVD	Protective (PTC or resistive) return to NE common for External Remote LVD contact closure
I	Return	input signal.
0	I Remote IVI)	External contact closure for remote disconnecting attached LVD; Disconnects LVD on a dry
		contact closure to Remote LVD Return when feature is enabled.
7	FAJ	General purpose Fuse Alarm Major (FAJ) alarm input; Major alarm on closureto the non-
3		grounded "Battery" side of the DC bus (-48V/±24V). Optional connection at connector J1.
		Open String (OS) alarm input for external battery disconnect switch; Alarms onclosure to the
4		non-grounded "Battery" side of the DC bus (-48V/±24V). Optional connection at connector J1.

Table 33 NE872 TB1 Signal Description

J100 and J101

Provides connectivity to the RS485 GP rectifier/converter bus as well as a pass through to the next RS485 connected device.

Pin #	Signal	Signal Description	
1	RS485+	nverting Driver Output / Inverting Receiver Input	
2	RS485-	Non-inverting Receiver Input/ Non-inverting Driver Output	
3	RS485REF	RS485 Reference/return. Pass-through on this board.	
4-8		No Connection	

Table 34 NE872 J100 and J101 Signal Description

QS871A Distribution Monitor and Control Module

Overview

The QS871A (CC109103371) allows the Pulsar Plus family of controllers to obtain distribution data through serial communications. The system controller monitor alarms for open load or battery protectors, measures load or battery shunts, monitors the bus voltage, and controls and monitors a single load or battery LVD contactor. Figure 19 shows the connections and interfaces for the QS871A.

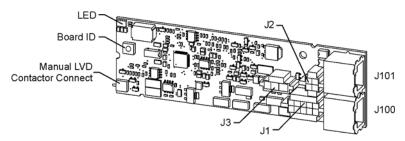


Figure 19: QS871A Remote Distribution Module

Module Features

The QS871A module has the following features:

• Status LED: This is a tri-colored LED and will illuminate accordingly for the conditions shown below.

LEDs (# = On)			
Green	Green Amber Red Condition		Condition
*			Normal
	*		Minor Alarm
		*	Major Alarm
		Flashing	Communication Loss with Controller
Flash (5s)		*	Manual Reconnect Command Accepting

In addition, the following alarms will be issued for the conditions noted. This assumes the external disconnect switch is used to open and close the battery charging path to the batteries.

Condition	Contactor Fail Alarm	Contactor Open Alarm		Controller LED	QS871 LED
Open Integral QS871A Disconnect Switch			X	RED	Blinking AMBER
Battery reconnected in reverse polarity	X	X		RED	RED
System started w/ reverse battery polarity	X	X		RED	RED

Alarm Inputs:

The QS871A is referenced to VBus(-), therefore, all alarm inputs are either alarmed on an open or a closure to VBus(-) as described below.

- One input closure to VBus(-) for **Remote LVD Open** (RO) from external source (J3 pins 1 and 2)
- One input to Fuse Input Major alarm upon closure to VBus(-), for distribution protector open alarms (J1 pin 7)
- One input to Open String alarm upon closure to VBus(-) for battery circuit breaker open alarms (J1 pin8)

Reverse Battery Protection:

The QS871A will prevent the closure of the battery contactor when it senses batteries have been connected in reverse polarity. The QS871A will keep the contactor disconnected and generate an appropriate alarm. When a battery disconnect breaker is used to take battery strings off-line for servicing, care must be taken to ensure battery connections are correct at the disconnect switch.

Manual LVD Contactor Connect:

This feature allows the Infinity NE or any other power system to resume powering the load after low voltage disconnect of batteries. Fully depleted battery strings can be replaced with fully charged strings. Once the strings have been installed, depressing the Manual LVD Contactor switch on the front of the QS871A module will result in the LVBD contactor closing. Continue to depress the switch until the Green LED stops flashing and displays a continuous green color. This indicates acceptance of the command and permanent closure of the contactor. Releasing the switch prior to the continuous green LED will result in the contactor opening and removing power to the load.

External Shunt Monitoring Input (J1 pins 4 and 5):

The shunt must be in the VBus(-) leg to maintain proper reference with the QS871A module. These inputs are for the system controller to read battery or load currents. The polarity of the connections must be positive during battery discharge.

Contactor Management:

Controls and monitors one load or battery non-latching contactor.

Autonomous Backup LVD Function:

Monitor system bus voltage for backup LVD function (in case of loss of communication to the QS871As or failed or removed controller). The configured disconnect and reconnect values assigned to a particular LVD function are sent from the controller to each respective QS871A. In the advent of a controller failure the QS871As will utilize their individual voltage monitoring and these thresholds to disconnect and reconnect the contactor.

7-Position ID Switch:

Rotary 8-position switch that uniquely identifies up to seven remote distribution monitor and control modules. ID position 0 is invalid. The controller can address up to eight unique distribution monitor and control modules.

Note: The majority of applications that utilize the QS871 utilize the QS871A. There are versions of the QS871 that are used in special applications where components have been removed because the feature was not required. These versions and the feature set are high-lighted below.

	Feature	QS871A	QS871B	QS871C
Inputs	Open String input	X	X	Х
	Fuse Alarm Major input	X		X
	Remote LVD Input	X		
	Auxiliary Alarm Input	X		
	Shelf ID Input		X	X
Misc	Status LED	X	X	X
	Rotary ID Switch (7-position)	X		
Contactor Drive And	Momentary Forced Closed LVD switch	X		Х
Monitor	Reverse Battery Detection feature	X		X
	Backup Contactor	X		X
	Disconnect/Reconnect features			
Analog Monitoring	Shunt Monitoring Circuitry	X	X	X
	DC Bus Monitoring Circuitry	X	X	X
Connectors	Power/Shunt/OS/FAJ connector	X	X	Х
	Shielded RJ-45 connectors	X		
	Remote LVD and Aux alarm connector	X		
	Contactor Control Connector	X		X

Module Connector Definitions

The QS871A module has five connectors: two RJ-45 connectors used for serial communication to ES773A VT- Probes, ES771A Remote Voltage Monitoring Modules, and a Pulsar Plus family controller and three connectors for monitoring circuit breakers, contactors and shunts. The connectors are defined as follows.

J1

Provides the connections to external distribution module's bus voltage and power, shunt inputs and reference, Fuse Alarm Major And Open String Inputs, and shunt.

Pin#	Signal Name	Signal Description			
1	VPWR-	VBUS(-) or BATT- Power. Power and board reference for QS871, connect to Non-Grounded side of the DC bus (-48V).			
2	VPWR+	/BUS (+) Power and Positive Sense voltage for backup monitoring.			
3	BATT-	ischarge Battery (BAT) input connected to the Non-Grounded side of the DC bus (-48V). sed as sense voltage for backup monitoring, reverse voltagedetection, and force contactor osed.			
4	SHUNT+	sitive Battery Shunt input signal whose signal polarity is defined by the voltage on shunt during battery discharge.			
5	SHUNT-	legative Battery Shunt input signal whose signal polarity is defined by the voltage on he shunt during battery discharge			
6	OS	Open String (OS) alarm input for external battery disconnect switch; Alarms on closure to the non-grounded "Battery" side of the DC bus (-48V).			
7	FAJ	General purpose Fuse Alarm Major (FAJ) alarm input; Major alarm on closure to the non-grounded "Battery" side of the DC bus (-48V).			
8	SHLF_ID3	Signal used for identifying the board. Pulled up or down on board accordingly in the factory			
9	RS485+	B Inverting Driver Output / Inverting Receiver Input			
10	RS485-	A Non-inverting Receiver Input/ Non-inverting Driver Output			

Table 35 QS871 J1 Signal Description

J2

Provides the contactor management interface for control and LVD status.

Pin#	Signal Name	Signal Description	
1	1 1 1 / 1 1 (() 1 1	Positive voltage applied to Low Voltage Disconnect Coil. Connect to positive side of contactor coil.	
2	LVD_COILRTN	Contactor coil return to VBUS- potential through circuitry. Connect to most negative side of Contactor coil, other side of connected to VBus(+).	
3	LVD_NC Normally Closed contactor status monitor. Closed to LVD_C when contactor is open. Conne signal to NC pin of micro- switch of Contactor.		
4	I IVD NO	Normally Open contactor status monitor indicator. Closed to LVD_C when contactor is closed. Connect signal to NO pin of micro-switch of contactor.	

Table 36 QS871 J2 Signal Description

Note: The common or return of the micro switch for these signals must be attached to Vbus- in the system outside of this board.

J3Connection that provides field access to External Auxiliary Fuse Alarm Major and the Remote LVD input.

Pin#	Signal Name	Signal Description			
1	Remote LVD	External contact closure for remote disconnecting attached LVD; Disconnects LVD on a dry contact closure to Remote LVD Return when feature is enabled.			
2	Remote LVD Return	Protective (PTC or resistive) return to NE common for External Remote LVD contact closu input signal.			
3	Aux_Alarm	General purpose Fuse Alarm Major (FAJ) alarm input; Major alarm on closure to the non- grounded "Battery" side of the DC bus Battery (-48V).			

Table 37 QS871 J3 Signal Description

J100 and J101

Provides connectivity to the RS485 GP rectifier/converter bus as well as a pass through to the next RS485 connected device.

Pin#	Signal Name	Signal Description			
1	RS485+	B Inverting Driver Output / Inverting Receiver Input			
2	RS485-	A Non-inverting Receiver Input/ Non-inverting Driver Output			
3	RS485REF	RS485 Reference/return. Pass-through on this board.			
4		Connection			
5	-	Connects between J101.5 and J100.5. Connection reserved for1-Wire communication signal in the system.			
6	-	Connects between J101.6 and J100.6. Connection reserved for1-Wire +5V signal in the system.			
7		No Connection			
8		No Connection			

Table 38 QS871 J100 and J101 Signal Description

ES772A Remote Distribution Module

Overview

The ES772A allows the controller to communicate with devices in TEPS or OEM distribution panels. It will allow the controller to alarm for open load and battery protectors, read battery current from an external shunt, and control a non-latching contactor. The contacts can be assigned as a load-disconnect or as a battery disconnect.

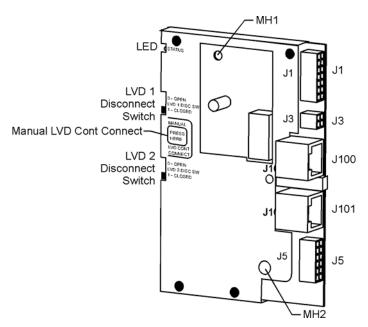


Figure 20: ES772A Remote Distribution Module

Controls, LED and Connectors

Receptacle J1: User connections to external distribution module.

Receptacle J3: User connections to external distribution module.

J100/J101: User connections to the controller J10, other devices such as the QS873A VT-Probe and the ES771A Remote Voltage Monitor Module, and other RJ45 connections carrying the RS485 rectifier communication bus.

Receptacle J5: User connections to external distribution module.

Mounting Hole MH1: Mounting hole to mount module in user application.

Mounting Hole MH2: Mounting hole to mount module in user application.

LVD2 Disc SW: Disconnect switch for external contactor 2

Manual LVD Cont Connect: Switches for forced reconnect function.

LVD1 Disc SW: Disconnect switch for external contactor 1, when wired as described in installation section.

LED: This is a tri-colored LED and will illuminate accordingly for the conditions shown below.

	LEDs: *= On			
Green	Amber	Red	Condition	
*			Normal	
	*		Minor Alarm	
		*	Major Alarm	
	Flashing		External Contactor(s) Manually Opened witheither LVD1 or LVD2 DISC SW	
		Flashing	Communication Loss with System Controller	
Flash (5 sec)		*	Manual Reconnect Command Accepting	

The ES772A is referenced to VBus(-), therefore, all alarm inputs are either alarmed on an open or a closure to VBus(-) as described in the following.

Module Features

The ES772A module has the following features:

• **16 Alarm inputs**. These inputs may be used to monitor for distribution circuit breakers with micro- switch closures for protector opening, GMT style fuses with or DIN style circuit breakers. Furthermore, the two Auxiliary Major alarms may be used to monitor micro-switch closures from other devices such as a fan or a door, etc.

The alarming states for the different inputs are as stated below:

- 10 inputs to alarm or an open to VBus(-) for DIN style circuit breakers (J5 pins 1-10)
- 2 inputs to alarm on closure to VBus(-) for Auxiliary Major alarming from external source (J5 pins 11 and 12)
- 2 inputs to alarm upon closure to VBus(-), for distribution protector open alarms (J1 pins 6 and 13)
- 2 inputs to alarm upon closure to VBus(-) for battery circuit breaker open alarms (J1 pins 7 and 14)
- (2) LVBD or LVLD Contactor Manual Disconnect Switches are provided. These switches allows users to manually open up to two external contactors to disconnect a battery string from the V(-) bus and allow the user to perform maintenance on the battery. The switches can also disconnect a load from the V(-) bus if the contactor is configured for load disconnect. The contactors are treated as one type of contactor. That is both contactors are either LVBD or LVLD type.
- Reverse Battery Protection. If wired as instructed in Fig. 9-2 or 9-3, the ES772A will prevent the closure of contactors with batteries that are wired in reverse polarity. It will be active during initial start-up and also during servicing if the integral battery disconnect switches are used to connect and disconnect the battery strings from the V(-) bus. If the battery strings are wired in reverse polarity and an attempt was made to close the contactor, the ES772A will disconnect all contactors and appropriate alarms will be transmitted. If an external disconnect switch is used to take battery strings off-line for servicing, care must be taken to ensure battery connections are correct at the disconnect switch. This is because the contactors remain closed when an external disconnect switch is used to disconnect the batteries from the bus. If the batteries are reconnected in reverse polarity, closing the switch will result in the batteries being connected to the bus in reverse polarity. If the external disconnect switch is connected as shown in Fig 3, then the reverse battery protection feature will be provided. Read all warning statements prior to making any connections.
- Manual LVD Cont Connect Manual LVD Contactor Connect. This feature allows the CPS6000 system to resume powering the load after low voltage disconnect of batteries following a battery on discharge event. The fully depleted battery strings are to be replaced with fully charged strings. Once the strings have been replaced, depressing the Manual LVD Cont switches on the front of the ES772A module will result in the LVD contactors closing and the LED blinking in green color. Continue to depress the switches until the LED stops flashing and displays a continuous green color. This indicates acceptance of command and continued closure of contactors. Note that releasing the switches prior to the LED displaying a continuous green color will result in the contactor opening and removing power to the load.

- External battery shunt input, (J1, pins 4 and 11). The battery shunt must be in the VBatt(-) leg to maintain proper reference with the ES772A module. These inputs are for the system controller to read battery current. The polarity of the connections must be positive during battery discharge.
- Monitor plant voltage for backup LVD function (in case of failure of controller during battery discharge)

Module Connector Definitions

The ES772A module has five connectors. Two are RJ-45 connectors used for RS485 serial communication to **ES773A VT-Probes**, the ES771A Remote Voltage Monitoring Module, and to the controller. The remaining connectors are used for monitoring circuit breakers, contactors and shunts and are defined in the following tables.

Connector J1 Pin-out Definitions

Pin	Name	Definition	Comments/Connections
1	VPWR+	V(+) Power	Power for ES772A, connect to VBus(+)
2	N/A	Reserved	
3	N/A	Reserved	
4	SHUNT-	Neg Batt Shunt Input	Polarity is during battery discharge
5	BATT1_SENSE	Polarity Sense for String 1	Connect to battery negative, V(-) of String 1
6	DIST_ALM_1	Trip-Indicator Input-1 for US Style CB or GMT Fuse. Alarmon closure to VBus(-).	Connect to NC terminal of breaker micro switch or to indicator lead of GMT fuse, other end (C) referenced toVBus(-).
7	EXT BAT SW1	Alarm input for external battery disconnect switch; alarm on closure to VBus(-).	Connect to NC micro switch of US Style CB, other end (C) referenced to VBus(-), micro switch must close upon manual opening of CB.
8	VPWR -	V(-) Power	Power for ES772A, connect to VBus(-)
9	STATUS1_RTN	Reference for STATUS1	Connect to C pin of micro switch of Contactor 1.
10	STATUS1	Contactor 1 Status Monitor	Connect to NO pin of micro switch of Contactor 1.
11	SHUNT+	Positive Battery Shunt Input	Polarity is during battery discharge
12	LVD1_COIL	Contactor 1 coil input	Connect to one side of Contactor 1 coil, other side ofcoil connected to VBus(+).
13	DIST_ALM_2	Trip-Indicator Input-2 for USStyle CB or GMT Fuse. Alarmon closure to VBus(-).	Connect to NC terminal of breaker micro switch or to indicator lead of GMT fuse, other end (C) referenced toVBus(-).
14	EXT BAT SW2	Alarm input for external battery disconnect switch; alarms on closure to VBus(-).	Connect to NC micro switch of US Style CB, other end (C) referenced to VBus(-), micro switch must close upon manual opening of CB.

Table 39 ES772 Connector J1 Pinout Definitions

Pin	Name	Definition	Comments
1	BATT2_SENSE	Polarity Sense for String 2.	Connect to battery negative VBus(-) of string 2.
2	STATUS2_RTN	Reference for STATUS2.	Connect to C pin of micro switch of Contactor 2.
3	STATUS2	Contactor 2 Status Monitor.	Connect to NO pin of micro switch of Contactor 2.
4	LVD2_COIL		Connect to one side of Contactor 2 coil, other side ofcoil connected to VBus(+).

Table 40 ES772 Connector J3 Pin Definitions

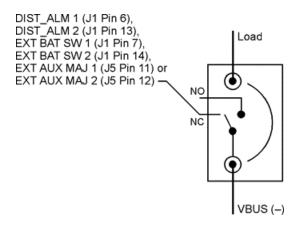


Figure 21: Typical Alarm Connections

The DIST_ALM(1, 2) EXT BAT SW(1, 2), and the EXT AUX MAJ(1, 2) alarm inputs are to be connected as shown in Figure 21. All of these inputs alarm on a closure to VBus(-). The DIST_ALM(1, 2) alarm inputs are to be used for monitoring US Style CBs and GMT style fuses. The EXT BAT SW(1, 2), alarm inputs are to be used for monitoring battery disconnect switches or circuit breakers with a micro switch that closes on manual opening of switch. The EXT AUX MAJ(1, 2) alarms may be connected to external devices with a micro switch that closes on an alarmed state. Examples of this might be a Door Open alarm, or a Fan Fail alarm.

Since these devices all alarm on a contact closure, the protectors of the same type may have the indicating NC terminal connected together and the C terminals connected together and connected as shown above. This is not the case for DIN style circuit breakers, which must be individually monitored via different alarm inputs as shown in Figure 24.

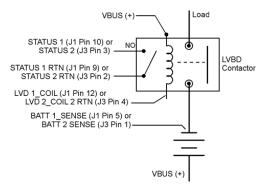


Figure 22: Alarm Connections with Reverse Polarity Protection

Figure 22 shows the connection required if Reverse Polarity Protection is to be used with the integral battery disconnect switches LVD1_DISC or LVD2_DISC. Note that the sense lead BATT1 or BATT2 must be connected as shown in order for the reverse polarity protection feature to work. If two strings are being used, connect one string to STATUS1, LVD1_COILRTN, STATUS1_RTN, BATCB1, and BATT1_SENSE connections and the other to the "-2" connections. When more than two strings are being used, divide the strings among the two inputs.

WARNING

When two battery strings are connected to the same battery terminal, care must be taken to ensure the polarity of the two strings is correct to each other. Improper connection will result in one string being shorted to the other string and the system can not protect against this.

With the above connections, the following alarms will be issued for the conditions noted.

	Contactor Fail Alarm	Contactor Open Alarm	Open String Alarm	Controller LED	ES772 LED
Open Integral ES772A Disconnect Switch		X		RED	Blinking AMBER
Battery reconnected in reverse polarity	X	X		RED	RED
System started w/ reverse battery polarity	X	X		RED	RED

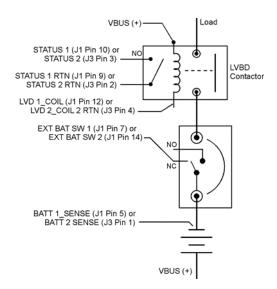


Figure 23: Reverse Polarity Protected Alarm Connections with an External Battery Disconnect Switch External Battery Disconnect Switch

Figure 23 shows the connections required if Reverse Polarity Protection is to be used with an external disconnect switch. Note that the sense lead BATT1_SENSE or BATT2_SENSE must be connected as shown in order for the reverse polarity protection feature to work. If two strings are being used, connect one string to STATUS1_LVD1_COIL, STATUS1_RTN, BATCB1, and BATT1_SENSE connections and the other to the "-2" connections. When more than two strings are being used, divide the strings among the two inputs.

WARNING

When two battery strings are connected to the same battery terminal, care must be taken to ensure the polarity of the two strings is correct to each other. Improper connection will result in one string being shorted to the other string and the system can not protect against this. With the above connections, the following alarms will be issued for the conditions noted. This assumes the external disconnect switch is used to open ans close the battery charging path to the batteries.

		Contactor Open Alarm	Open String Alarm	Controller LED	ES772 LED
Open Integral ES772A Disconnect Switch			Х	RED	Blinking AMBER
Battery reconnected in reverse polarity	X	X		RED	RED
System started w/ reverse battery polarity	×	×		RED	RED

Auxiliary Port Connector

Pin	Function	Pin	Function
1	DIN CB-1	2	DIN CB-2
3	DIN CB-3	4	DIN CB-4
5	DIN CB-5	6	DIN CB-6
7	DIN CB-7	8	DIN CB-8
9	DIN CB-9	10	DIN CB-10
11	EXT AUX MAJ-1	12	EXT AUX MAJ-2

Table 41 Auxiliary Port Connector Signals

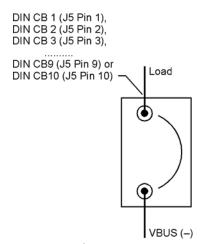


Figure 24: Alarm Connections for DIN Style Load Protectors

Figure 24 shows the connections required if load protectors are the DIN style circuit breakers. Note that 10 alarm inputs are provided for monitoring up to 10 DIN breakers because these breakers must be monitored individually. The DIN CB(1-10) inputs are alarmed on an open to VBus(-)

J100 and J101 Serial Ports

J100 and J101 are used to connect the ES772A to the controller. Note that if QS873A VT-Probes are to be used in conjunction with the ES772A, connect J100 or J101 on the ES772A to the controller via the Auxiliary Port connector on the controller, and then connect the QS873A to the unused RJ-45 jack on the ES772A.

If the ES772A is being used with both the QS873A and the ES771A Remote Voltage Monitoring Module, connect either the ES771A or the QS873A to the controller as both have two RJ-45 jacks for serial communication purposes. Then connect the two-jack device not connected to the controller to the unused serial port of the two-jack device connected to the controller, and connect the QS873A to its second serial port.

ES772A Module Mounting

Use the template in Figure 26 as a guide to mount the ES772A in your application. The location of the mounting holes MH1 and MH2 are outlined.

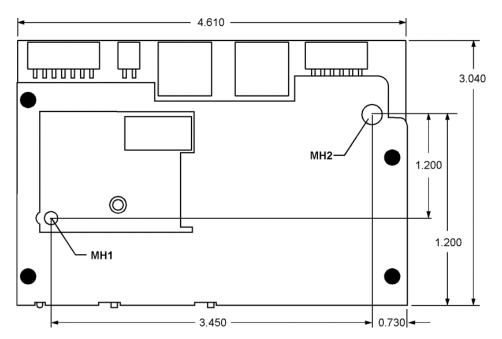


Figure 25: ES772A Mounting Hole Locations

22-position external distribution panel

Overview

The J5694722 external distribution accepts up to 22 bullet-breakers for DC loads and occupies 3U of vertical rack space in a 23" rack. The panel has a total output capacity of 400A and is front accessible. The following configurations are available in 3 distinct distribution modules:

- Without contactor
- With 400A LVLD and 500A shunt
- With 400A LVBD and 500A shunt

Features

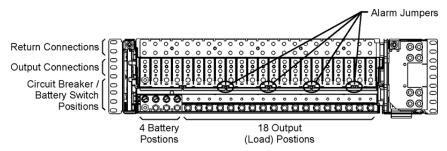


Figure 26: J5694722 External Distribution

- Up to 22 flexible battery positions that can be configured either with the battery bus or the load bus using an adapter plate
- All lug connections accept double-holed lugs.
- Staggered vertical arrangement of up to three distributions directly stacked with wiring access.
- Contactor control, measurements and alarms with the Pulsar Plus family compatible ES772 module
- CO ground connection
- Contactor options None, LVBD, LVLD
- 500A shunt
- Accommodates single, double and triple pole breakers with lug adapter for multi-pole breakers
- English hardware (1/4-20) for all customer connections
- TPS fuses in place of bullet-breakers

This page is intentionally blank.

Troubleshooting

Alarm Severity Indicator ²	User Interface Display	Rectifier LED	Distribution Module Board LED	Possible Problem(s)	Possible Solution(s)
PMN				Single Rectifier not receiving ac power.	Verify ac power to rectifier is available.
	MIN, AC Fail	None	GREEN	AC input circuit breaker has opened.	Verify rectifier input circuit breaker is closed.
AMBER				• AC input voltage is out of range.	3. If problem not corrected, replace rectifier.
PMJ	MIN, AC Fail MAJ, Multiple			Multiple rectifiers not receiving ac power, batteries are powering load.	Verify ac power to rectifiers is available.
	AC Fail	None	GREEN	AC input circuit breakers have opened.	Verify rectifier input circuit breakers are closed.
RED	MAJ, Battery on Discharge			AC input voltage is out of range.	3. If problem not corrected, replace rectifier.
				Internal rectifier fault.	
PMJ or PMN	MIN, AC Fail			A rectifier, multiple rectifiers, or the entire system has lost AC and	 Verify that ac power to all rectifiers is available. Verify that rectifiers all report good AC
AMBER or RED	MAJ, Multiple AC Fail	None	GREEN	one or more rectifiers have been removed from the system while under this condition.	3. Issue the uninstall equipment under the operations menu for any rectifier that may have been removed during the AC fail.
РМЈ	MAJ, Battery on Discharge	AC OK	GREEN	Rectifier output voltage has fallen below the battery on discharge	If commercial ac power is present but the system voltage remains low, call your local field representative.
RED	Discharge	DCOK		threshold set by the user.	Investigate other alarms that may be present such as rectifier related problems.
PMN AMBER	MIN, Rectifier Fail	AC OK ALARM (Note 1)	GREEN	Rectifier output has dropped below 36V, rectifier has entered	Replace rectifier.
AIVIDER		(110001)		hiccup mode.	Dana ava gantuallam if avitualit
PMJ	MAJ, Rectifier Fail	AC OK ALARM (Note 1)	GREEN	All rectifier outputs have dropped below 36V, all rectifiers have entered hiccup mode.	Remove controller; if output voltage does not go to set-point previously set by user, call your local field representative.
RED		(INOLE I)		Defective controller.	

Table 42 Pulsar Power System Troubleshooting

² **Pulsar Displays** – Alarm Severity indicated by back-light color of the display: Red = Critical or Major, Amber = Minor, Green = Normal.

Alarm Severity Indicator ²	User Interface Display	Rectifier LED	Distribution Module Board LED	Possible Problem(s)	Possible Solution(s)
PMJ RED	MAJ, RectifierFail (Note 1)	AC OK DC OK	AMBER (Blinking)	One or both of the LVD contactors is open; someone may have manually opened LVD contactor.	Place disconnect switch in ON position.
PMN AMBER	MAJ, Contactorl Open	AC OK DC OK	GREEN	Batteries have exceeded temperature threshold set by user.	Call your local field representative.
None	No response.	RED (Blinking)	RED (Blinking)	Controller failure, alldevices on the communication bus reporting loss of communication with controller.	Check controller to ensure it is properly inserted into its slot. Ifso, perform the following steps: 1. Remove the controller board for Iminute and then reset. 2. If problem persists, replace controller with new controller board. 3. If problem still persists, call your local field representative.
PMN AMBER	MIN, Thermal Probe Fail	AC OK DC OK	GREEN	Battery thermal probe failed.	 Ensure thermal probe is properly connected to thermal probe cable and controller Ensure cable is properly connected to the rear of the Distribution Module. If problem persists, replace thermal probe per ensuing instructions. If no thermal probe is desired make sure the Slope Thermal Compensation feature is disabled. If problem still persists, call your local field representative.
PMJ RED	MAJ, Fuse Major	AC OK DC OK	RED	One or more of the output circuit breakers or fuses have opened.	Reset circuit breakers or replace fuse.
PMN AMBER	MIN, RectifierFail	AC OK ALARM	Normal	Single rectifier thermal alarm: Excessive ambient temperature Multiple rectifier failure	 Verify that there is no obstruction of the vertical airflow path. Reset the rectifier by removing the rectifier, waiting approximately 30 seconds, and replacing the rectifier. If problem persists, replace the rectifier. If problem still persists, call your local field representative.

Table 42 Pulsar Power System Troubleshooting

					POWE
Alarm Severity Indicator ²	User Interface Display	RectifierLED	Distributio n Module Board LED	Possible Problem (s)	Possible Solution s)
PMJ RED	MIN, Rectifier Fail MAJ, Multiple Rectifier Fail MAJ, Battery on Discharge	AC OK ALARM	Normal	Multiple rectifier thermal alarm: Excessive ambient temperature Multiple rectifier failure	 Verify that there is no obstruction of the vertical airflow path. Reset rectifies by removing them, waiting approximately30s and replacing them. If problem persists, replace the rectifiers. If problem still persists, call your local field representative.
PMJ RED	MAJ, High Voltage	AC OK ALARM	Normal	High output voltage from Rectifier(s) Rectifier(s) high voltage shutdown Internal rectifier(s) failure	 Reset the rectifier(s) by removing the rectifier(s), waiting approximately 30s and replacing the rectifier(s). If problem persists, replace the rectifier. If problem still persists, call your local field representative.
PMN Amber	MIN, Clock Battery Low	AC OKDC OK	Normal	Internal Lithium Battery IsLow	1. Obtain battery replacement, 408533541 M4T32-BR12SH6 Clock Battery and replace in field. Call Tech-support 1-877- 546-3243, if assistance is needed.
PMN Amber	MIN, Minor Communication Fail	RED Blinking Single rectifier	GREEN	Rectifier lost communication with controller.	 If a rectifier has been removed from an installed/operational system, go to the Control/ Operations menu and execute Uninstall Equipment. Reset the rectifier by removing the rectifier, waiting approximately 30 seconds, and replacing. If problem persists, replace the rectifier. If problem still persists, call your local field representative.
PMJ RED	MAJ, Major Communication Fail	GREEN	RED (Blinking)	LVD Board lost communication with the controller.	1. Replace Distribution Module Board. (Note 2) 2. If problem persists, call your local field representative.

Table 42 Pulsar Power System Troubleshooting

Note 1: While in hiccup mode, the rectifier will attempt to restart every 10 seconds for a maximum of 3 times.

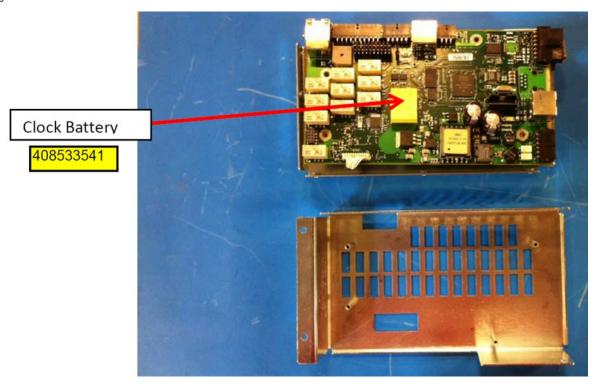
Note 2: Refer to Section 5, LVD board Removal for removal details. Note that the power system will continue to power the load while the LVD board is out of the system; however, there will be no possibility of battery backup until the LVD board is replaced.

Checking for Defective VT-Probes

- 1. Disconnect the first probe from its RJ-45 terminal block.
- 2. Run the CLE function. If the system controller illuminates its LED in green color, the probe is defective. Alternatively, the number of registered probes may be known from the terminal interface (TI) by running the Number of Temperatures present command, see Appendix B. If the registered number of probes is equal to the total number of probes connected, remember you've removed a probe, so the total number will be one less than that during installation, and then the first probe is defective. Replace the probe with a different probe and follow the above procedure to ensure it is operational.
- 3. If the system controller LED remains green or the number of registered probes is still incorrect, replace the first probe and remove the second probe and repeat Step 2. Continue this procedure until the defective probe has been found.

Clock Battery Replacement in a Pulsar Controller (408533541 Replacement Clock Chip)

1. Note the position of the cable connections on the rear of the Pulsar controller and disconnect them. Remove the Pulsar controller from the door by removing the four 5/16" nuts that hold it on the door. There are two on each



side.

2. Place the assembly on a bench. Remove the 5 phillips screws that hold the Pulsar rear cover to the front display assembly.

Specifications

General Specifications	
Item	Specification
Input Voltage Ranges (power)	+/-24 volts: from +/-18 volts to +/-30 volts; -48 volts: from -36.5 volts to -60 volts SELV
Input Power	6.0 watts maximum
Input Power Connections	NE843A/CP843A/EP843D, No external connection required;NE843C/NE843E/NE843G/NE843P, (J9)12-pin connector
Bonding Network	Suitable for installation as part of either Common Bonding Network (CBN) an Isolated Bonding Network (IBN)
Facilities	Suitable for installation in Network Telecommunication Facilities Locations where the NEC applies
DC Return	Isolated DC Return (DC-I) orCommon DC Return (DC-C)
Front Panel User Interface	 4 or 8-line by 40-character LCD Severity sensitive backlit LCD(LEDs on NE 843P); Three status LEDs (20 on NE843P) Voltage test jacks; Six Push Buttons (Rotary Control + 2 Push Buttons on NE843P)
System Configuration Methods	• Front panel LCD display and menu keys (J5) and (J8) 10/100 Base-T port/s (J7) DB9 for RS-232 port: T1.317 or EasyView (J6) RJ11 for phone line connection –MODEM option
Maximum Power Units	60 NE Power Units32 CP Power Units
Low-Voltage Disconnects	Manage up to eight LVD contactors using up to 3 independent configurable Load disconnect thresholds (LVLDs) and 1 configurableBattery disconnect threshold (LVBD).
Temperature Monitoring	Up to 16 One-Wire Battery Temperatures; One on-board internal ambient temperature

Table 43 Specification

System Inputs/Outputs Specificat	
Item	Specification
SELV	All input and output connections comply with SELV requirements.
Connections - Ports	 CAUTION Intra-building ports of the equipment or subassembly are suitable for connection only to shielded intra-building orun exposed wiring or cabling grounded at both ends. MUST NOT be metallically connected to interfaces whichconnect to the OSP or its wiring. These interfaces are designed for use as intra-building interfaces only (Type 2 or Type 4 ports as described in GR-1089-CORE, Issue 5) and require isolation from the exposed OSP cabling. The addition of Primary Protectors is not sufficient protection. All controller ports are intra-building except the phone port of the BSM6 Modem.
Alarm and Control Inputs	(J3) 10-pin connect or 2 control and 5 alarm inputs and returns; (J1) 6-pin connect or for 4 basic plant inputs
Alarm Contact Outputs	10 User configurable Form-C Outputs; (J4) 20-pin connector for 10 individual alarm output contacts;Wire size: 28-16 AWG stranded or solid
Alarm Contact Ratings	60 V _{DC} , 0.5A
	to 50°C ±0.05% of full scale + 1 count 48V Systems: ±40 mV; 24V Systems ±25 mV to 85°C ±0.1% of full scale + 1 count) 48V Systems: ±70 mV; 24V Systems ±40 mV 0.01V
Plant Current Measurement Accuracy 0 to 50°C -40 to 85°C Resolution	±0.5% of full scale ±1.25% of full scale 1A
Temperature Measurement One-Wire Probe Accuracy -5 to +55°C -40 to +85°C Resolution	±1°C ±3°C 0.1°C

Environmental Specification	ns en
Item	Specification
Operating Temperature	-40 to 75°C (-40 to 167°F)
Storage Temperature	-40 to 85°C (-40 to 185°F)
Altitude	-200 to 13,000 feet (-61 to 3962 meters) ³
Humidity	10% to 95% non-condensing
Audible Noise	< 60 dBA
Earthquake Rating	Zone 4, upper floors
Controlled Environment	Use this equipment in a controlled environment (an area where the humidity is maintained at levels that cannot cause condensation on the equipment, the contaminating dust is controlled, and the steady-state ambient temperature is within the range specified).

³ For altitudes above 5000 feet (1524 meters), derate the temperature by 3.6 °F per 1000 feet (0.656 °C per 100 meters).

nstallation Area Specifications				
Item	Specification			
Installation Area Limitations	Store and operate this equipment in a controlled environment, an area where the humidity is maintained at levels that cannot cause condensation on the equipment, the contaminating dust is controlled, and the steady-state ambient temperature is within the range specified.			

Operation Without Batteries	Operation Without Batteries				
Item	Specification				
Suitability without Batteries	Suitable for use in power plants with or without batteries.				
Loss of AC Power without Batteries	Loss of ac power causes Controller DC power is lost Controller alarm relays are activated (unpowered)				
Recovery from Loss of AC Power without Batteries	Restoration of AC power causes Rectifiers return to their configured voltage set point Controller DC power is restored Controller automatically return to its last configuration Alarm relays reflect actual alarm states				

Safety / Standards Compliance Sp	Safety / Standards Compliance Specifications				
Item	Specification				
Safety Agency Approvals	UL Recognized to UL Subject 1801, Power Distribution Center for Communications Equipment and CAN/CSA C22.2No. 60950-1-03, UL 60950-1, Standard for Safety of Information Technology Equipment.				
European Economic Community (EEC)Directives	EMC Directive 89/336/EEC, Low Voltage Directive 73/23/EEC as amended by Marking Directive 93/68/EEC				
Radiated and Conducted Emissions	FCC Part 15, Class A EN55022 (CISPR22) Class A				
Electromagnetic Immunity	Telcordia GR-1089-CORE EN55022 (CISPR22) Class A				
Electrostatic Discharge	EN61000-4-2 Level 1-4				
RF Immunity	IEC61000-4-3 Level 3, 10 V/m				
Conducted Immunity	IEC 61000-4-6 Level 3 Input Power Ports IEC 61000-4-6 Level 2 Telecom Ports				
Voltage Dips, Interruptions, and Variations	IEC 61000-4-11, EN55024 (CISPR24)				

Safety

Safety Statements

Please read and follow all safety instructions and warnings before installing, maintaining, or repairing the equipment. Refer to individual equipment product manuals for additional safety statements specific to other equipment being installed, removed, or replaced.

See the Specifications section for equipment specific

- Safety Compliance information
- Installation Area Limitations
- Environmental Limitations
- Do not install this equipment over combustible surfaces.
- For installations in the U. S. or Canada, use Listed/Certified compression connectors to terminate Listed/Certified field-wire conductors where required. For all installations, apply the appropriate connector to the correct size conductor as specified by the connector manufacturer, using only the connector manufacturer's recommended tooling or tooling approved for that connector.
- If the proper connector for the country of installation is not provided, obtain appropriate connectors and follow manufacturer's requirements and all local requirements for proper connections.
- Follow all national and local rules and regulations when making field connections.
- Torque electrical connections to the values specified on labels or in the product documentation.
- DC output cables must be dressed to avoid damage to the conductors (caused by routing around sharp edges or routing in areas where wires could get pinched) and undue stress on the connectors.
- Either external fuses or external circuit breakers must be sized as required by the National Electric Code (NEC) and/ or local codes. Refer to the equipment ratings to assure rating of equipment will not exceed 80% of the value of the protector chosen.
- Insulation on field-wired conductors must be rated no less than 90° Celsius. Size conductors based on listed recommendations. Wiring internal to enclosed equipment cabinets must be rated at 105° Celsius (minimum).
- Provide an accessible AC disconnect/protection device to remove AC power from the equipment in the event of an emergency. This device must open all poles and be connected together.
- Alarm contacts are not fused within the equipment. Current limiting protection for these contacts must be
 provided by external circuits. Exceeding these maximum ratings could result in fire or damage to the unit. See
 Specifications section for alarm contacts ratings.
- In enclosed equipment cabinets, the equipment chassis must be connected directly to the cabinet ac service ground bus. For applications in huts, vaults, and central offices, the equipment chassis must be connected to the system bonding network.

Warning Statements and Safety Symbols

The symbols may sometimes be accompanied by some type of statement; e.g., "Hazardous voltage/energy inside. Risk of injury. This unit must be accessed only by qualified personnel." Signal words as described below may also be used to indicate the level of hazard.

DANGER	Indicates the presence of a hazard that will cause death or severe personal injuryif the hazard is not avoided.
WARNING	Indicates the presence of a hazard that can cause death or severe personal injuryif the hazard is not avoided.
CAUTION	Indicates the presence of a hazard that will or can cause minor personal injury or property damage if the hazard is not avoided.
	This symbol identifies the need to refer to the equipment instructions for important information.
でき	These symbols (or equivalent) are used to identify the presence of hazardous acmains voltage.
A	This symbol is used to identify the presence of hazardous ac or dc voltages. It may also be used to warn of hazardous energy levels.
	One of these two symbols (or equivalent) may be used to identify the presence of rectifier and battery voltages. The symbol may sometimes be accompanied by some type of statement, for example: "Battery voltage present. Risk of injury dueto high current. Avoid contacting conductors with non-insulated metal objects. Follow safety precautions."
innia unitant	One of these two symbols may be used to identify the presence of a hot surface. It may also be accompanied by a statement explaining the hazard. A symbol like this with a lightning bolt through the hand also means that the part is or could be at hazardous voltage levels.
	This symbol is used to identify the protective safety earth ground for the equipment.
	This symbol is used to identify other bonding points within the equipment.
	This symbol is used to identify the need for safety glasses and may sometimes be accompanied by some type of statement, for example: "Fuses can cause arcing and sparks. Risk of eye injury. Always wear safety glasses."

Precautions

- Install, service, and operate this equipment only by professional, skilled and qualified personnel who have the necessary knowledge and practical experience with electrical equipment and who understand the hazards that can arise when working on this type of equipment.
- The equipment may be powered by multiple ac inputs. Ensure that the appropriate circuit protection device for each ac input being serviced is disconnected before servicing the equipment.
- Do not disconnect permanent bonding provisions unless all AC inputs are disconnected.
- Batteries may be connected in parallel with the output of the rectifiers. Turning off the rectifiers will not necessarily remove power from the bus. Make sure the battery power is also disconnected and/or follow safety procedures while working on any equipment that contains hazardous energy/voltage.
- High leakage currents may be possible on this type of equipment. Make sure the equipment is properly safety earth grounded before connecting power.
- Exercise care and follow all safety warnings and practices when servicing this equipment. Hazardous energy and voltages are present in the unit and on the interface cables that can shock or cause serious injury. When equipped with ringer modules, hazardous voltages will be present on the ringer output connectors.
- Use the following precautions in addition to proper job training and safety procedures:
 - Use only properly insulated tools.
 - Remove all metallic objects (key chains, glasses, rings, watches, or other jewelry).
 - Wear safety glasses. Fuses can produce sparks. High energy levels on buses and distribution components can produce severe arcing.
 - Test circuits before touching.
 - Lock out and tag circuit breakers/fuses when possible to prevent accidental turn on.
 - Be aware of potential hazards before servicing equipment.
 - Identify exposed hazardous electrical potentials on connectors, wiring, etc. (note the condition of these circuits, especially wiring).
 - Use care when removing or replacing covers; avoid contacting circuits.
- Electricity produces magnetic fields that can affect implanted medical electronic devices, such as pacemakers. The strength of the magnetic field depends on the amount of current in the circuit, as well as other conditions (such as number of conductors, placement, and distance from the conductor). DC power and distribution systems, including batteries, which are typically used in telecommunications utility rooms, can operate at high current levels. Personnel with electronic medical devices need to be aware of their restrictions when working around electricity.

Contacts and Warranty

Customer Service Contacts

Customer Service, Customer Training, Technical Support, Product Repair and Return, and Warranty Service

For customers in the United States, Canada, Puerto Rico, and the US Virgin Islands,

please dial +1 877 546 3243 (877 OmniOn Power™) or for all other countries, please call +1 972 244 9288.

This number is staffed from 7:00 am to 5:00 pm USA Central Time Zone (GMT -6), Monday through Friday, on normal business days. At other times, this number is still available, but for emergencies only. Services provided include initiating the spare parts procurement process, ordering documents, product warranty administration, and providing other product and service information.

For other customers worldwide the 800 number may be accessed after first dialing the OmniOn Power™ Direct country code for the country where the call is originating, or you may contact your local field support center or your sales representative to discuss your specific needs.

On-Line Power Systems Product Manuals and Software

Power Systems on-line product manuals and software are available on-line. Software includes Easy View and SNMP MIB.

Product Warranty

A. Seller warrants to Customer only, that:

- 1. As of the date title to Products passes, Seller will have the right to sell, transfer, and assign such Products and the title conveyed by Seller shall be good;
- 2. During the warranty period stated in Sub-Article B below, Seller's Manufactured Products (products manufactured by Seller), which have been paid for by Customer, will conform to industry standards and Seller's specifications and shall be free from material defects;
- 3. With respect to Vendor items (items not manufactured by Seller), Seller warrants that such Vendor items, which have been paid for by Customer, will be free from material defects for a period of sixty (60) days commencing from the date of shipment from Seller's facility
- B. The Warranty Period listed below is applicable to Seller's Manufactured Products furnished pursuant to this Agreement, commencing from date of shipment from Seller's facility, unless otherwise agreed to in writing:

Warranty Period				
Product Type New Product Repaired Product*				
Central Office Power Equipment**	24 Months	6 Months		

^{*} The Warranty Period for a repaired Product or part thereof is six (6) months or, the remainder of the unexpired term of the new Product Warranty Period, whichever islonger.

C. If, under normal and proper use during the applicable Warranty Period, a defect or nonconformity is identified in a Product and Customer notifies Seller in writing of such defect or nonconformity promptly after Customer discovers such defect or nonconformity, and follows Seller's instructions regarding return of defective or nonconforming Products, Seller shall, at its option attempt first to repair or replace such Product without charge at its facility or, if not feasible, provide a refund or credit based on the original purchase price and installation charges if installed by Seller. Where Seller has elected to repair a Seller's Manufactured Product (other than Cable and Wire Products) which has been installed by Seller and Seller ascertains that the Product is not readily returnable for repair, Seller will repair the Product at Customer's site.

With respect to Cable and Wire Products manufactured by Seller which Seller elects to repair but which are not readily returnable for repair, whether or not installed by Seller, Seller at its option, may repair the cable and Wire Products at Customer's site.

- D. If Seller has elected to repair or replace a defective Product, Customer shall have the option of removing and reinstalling or having Seller remove and reinstall the defective or nonconforming Product. The cost of the removal and the reinstallation shall be borne by Customer. With respect to Cable and Wire Products, Customer has the further responsibility, at its expense, to make the Cable and Wire Products accessible for repair or replacement and to restore the site. Products returned for repair or replacement will be accepted by Seller only in accordance with its instructions and procedures for such returns. The transportation expense associated with returning such Product to Seller shall be borne by Customer. Seller shall pay the cost of transportation of the repaired or replacing Product to the destination designated by Customer.
- E. Except for batteries, the defective or nonconforming Products or parts which are replaced shall become Seller's property. Customer shall be solely responsible for the disposition of any batteries.
- F. If Seller determines that a Product for which warranty service is claimed is not defective or nonconforming, Customer shall pay Seller all costs of handling, inspecting, testing, and transportation and, if applicable, traveling and related expenses.
- G. Seller makes no warranty with respect to defective conditions or nonconformities resulting from actions of anyone other than Seller or its subcontractors, caused by any of the following: modifications, misuse, neglect, accident, or abuse; improper wiring, repairing, splicing, alteration, installation, storage, or maintenance; use in a manner not in accordance with Seller's or Vendor's specifications or operating instructions, or failure of Customer to apply previously applicable Seller modifications and corrections. In addition, Seller makes no warranty with respect to Products which have had their serial numbers or month and year of manufacture removed, altered, or experimental products or prototypes or with respect to expendable items, including, without limitation, fuses, light bulbs, motor brushes, and the like. Seller's warranty does not extend to any system into which the Product is incorporated. This warranty applies to Customer only and may not be assigned or extended by Customer to any of its customers or other users of the Product.

THE FOREGOING WARRANTIES ARE EXCLUSIVE AND ARE IN LIEU OF ALL OTHER EXPRESS AND IMPLIED WARRANTIES, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. CUSTOMER'S SOLE AND EXCLUSIVE REMEDY SHALL BE SELLER'S OBLIGATION TO REPAIR, REPLACE, CREDIT, OR REFUND AS SET FORTH ABOVE IN THIS WARRANTY.

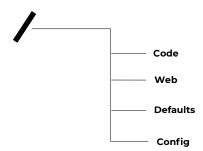
Appendix A: Software Upgrades through Craft Port

Software can be upgraded through the 10/100Base-T connection either over the network or when configured as the Ethernet Craft Port. There are four program files that can be upgraded on the Pulsar Plus family of controllers: The boot block, the factory defaults, application, and web pages. The present application does not have a factory defaults file. Hard coded defaults are utilized. In any case, each of these items has a specific file name. FTP is used for upgrading controller software. Each file goes in a certain directory on the controller:

Item	File	Directory
Boot Block	NE843-boot.bin	/
Defaults	NE843-dflts.bin	dflts
Application	NE843-app.bin	code
Web pages	NE843-pages.web	web
Backup Configuration	config.gal	config
Language file	alt.lang	custom

These files must be uploaded to the controller using FTP either through the web page interface or through a direct Telnet session. To use FTP, the user must first initiate a Telnet session through the Craft port or network connection. To use the Ethernet port locally as a Craft port it needs to be configured as a DHCP Server. DHCP Server operation can be validated at Menu+Status+Network Settings. Scroll down to view the port's present configuration.

If it is not in DHCP Server mode, make sure the Craft port is not plugged into a LAN connection and re- configure the DHCP setting from the front panel to be Server. This is parameter is found in Menu→Configuration→Communication Ports→Network Settings→DHCP. Note: the controller will need to be rebooted in order to accept the new Ethernet port configuration. This is done by temporarily removing power to the unit. This process takes approximately two minutes.


Upgrade using FTP Client:

Common FTP commands used when performing file operations are:

- **ftp** Initiate the ftp session.
- **cd** Change directories in the controller.
- **put** Copy files from the PC running FTP to the controller (The present working directory of the PC will be the source directory for the file being copied.)
- get Copy files from the controller to the PC running FTP (The present working directory of the PC will be the
 destination directory for the file being copied.)
- **bye** Exit the FTP session
- **pwd** Display the path of the current directory
- rm Remove a file from a directory
- Is List all files in a directory

Note: The controller has a file/directory structure as shown below: Where "/" is the root directory. Each subdirectory contains files that are necessary for the Application Software and web pages. Thus, using an FTP client, shown previously, files may be transferred to/from these controller directories. The exact path to the upgrade file may be used in the "put" command to update the software. Note: software upgrades require administrator level privilege. Thus, the password required is administrator. Similar responses are seen when opening a Telnet session remotely over the LAN connection. Note: you have to give the path of to the file in conjunction with the put commands.

Boot Block Software

Using any FTP client, perform the following steps to load Application Software:

- 1. Change your directory to the PC directory where the Application code is stored.
- 2. Type: FTP x.x.x.x (The controller Working IP Address is 192.168.2.1).

ftp 192.168.2.1

Connected to 192.168.2.1

220 NE843 FTP Ready

3. Login as guest using the network administrator password (administrator).

User (192.168.2.1:(none)): **guest**

331 User name okay, need password

Password: administrator

230 Logged in

4. Change directory (cd) to the main **boot block** directory by typing: cd /.

ftp> cd /

250 CWD command successful

5. Use the put command to copy the application software to the controller.

ftp> put **NE843-boot.bin**

200 Port command okay

150 Opening data connection for STOR (192.168.2.1,1576)

6. Wait until the message indicating a successful file transfer is displayed.

226 File sent OK

ftp: 917504 bytes sent in 2.31Seconds 396.50Kbytes/sec.

7. Type bye to exit/logout of the FTP session.

ftp> **bye**

Factory Defaults

Using any FTP client, perform the following steps to load default web pages:

- 1. Change your directory to the PC directory where the factory default file is stored.
- 2. Type: FTP x.x.x.x (The controller Working IP Address is 192.168.2.1).

ftp 192.168.2.1

Connected to 192.168.2.1 220 NE843 FTP Ready

3. Login as guest using the network administrator password (administrator).

User (192.168.2.1:(none)): **guest**

331 User name okay, need password

Password: administrator

230 Logged in

4. Change directory (cd) to the dflts directory by typing: cd dflts.

ftp> cd dflts

250 CWD command successful

5. Use the put command to copy the web pages to the controller.

ftp> put NE843-dflts.bin

200 Port command okay

150 Opening data connection for STOR (192.168.2.1,1576)

6. Verify the transfer by a message displayed indicating a successful file transfer.

226 File sent OK

ftp: 917504 bytes sent in 2.31Seconds 396.50Kbytes/sec.

7. Type bye to exit the FTP session.

ftp> bye

221 Goodbye!

Application Software

Using any FTP client, perform the following steps to load Application Software:

- 1. Change your directory to the PC directory where the Application code is stored.
- 2. Type: FTP x.x.x.x (The controller Working IP Address is 192.168.2.1).

ftp 192.168.2.1

Connected to 192.168.2.1 220 NE843 FTP Ready

3. Login as guest using the network administrator password (administrator).

User (192.168.2.1:(none)): **guest**

331 User name okay, need password

Password: administrator

230 Logged in

4. Change directory (cd) to the code directory by typing: cd code.

ftp> cd code

250 CWD command successful

5. Use the put command to copy the application software to the controller.

ftp> put NE843-app.bin

200 Port command okay

150 Opening data connection for STOR (192.168.2.1,1576)

6. Wait until the message indicating a successful file transfer is displayed.

226 File sent OK

ftp: 917504 bytes sent in 2.31Seconds 396.50Kbytes/sec.

7. Type bye to exit/logout of the FTP session.

ftp> bye

221 Goodbye!

Web Pages

Using any FTP client, perform the following steps to load default web pages:

- 1. Change your directory to the PC directory where the factory default file is stored.
- 2. Type: FTP x.x.x.x (The controller Working IP Address is 192.168.2.1).

ftp 192.168.2.1

Connected to 192.168.2.1

220 NE843 FTP Ready

3. Login as guest using the network administrator password (administrator).

User (192.168.2.1:(none)): **guest**

331 User name okay, need password

Password: administrator

230 Logged in

4. Change directory (cd) to the web directory by typing: cd web.

ftp> cd web

250 CWD command successful

5. Use the put command to copy the web pages to the controller.

ftp> put NE843-pages.web

200 Port command okay

150 Opening data connection for STOR (192.168.2.1,1576)

6. Verify the transfer by a message displayed indicating a successful file transfer.

226 File sent OK

ftp: 917504 bytes sent in 2.31Seconds 396.50Kbytes/sec.

7. Type bye to exit the FTP session.

ftp> bye

Backup/Restore Configuration File

Using any FTP client, perform the following steps to load default web pages:

- 1. Change your directory to the PC directory where the factory default file is stored.
- 2. Type: FTP x.x.x.x (The controller Working IP Address is 192.168.2.1).

ftp 192.168.2.1

Connected to 192.168.2.1 220 NE843 FTP Ready

3. Login as guest using the network administrator password (administrator).

User (192.168.2.1:(none)): **guest**

331 User name okay, need password

Password: administrator

230 Logged in

4. Change directory (cd) to the config directory by typing: cd config.

ftp> cd config

250 CWD command successful

Backup/Retrieve

5. To retrieve a backup of a site's configuration use the get command to get a copy of the configuration file (config.gal).

ftp> get config.gal

200 Port command okay

150 Opening data connection for STOR (192.168.2.1,1576)

226 File sent OK

Restore

5. To restore a backup of a site's configuration use the put command to load a copy of the configuration file (config.gal) to the site

ftp> put filename config.gal

Note: The full path of to the file with the filename must be provided. It is OK just to use the same name with a command like the following:

ftp> put config.gal

200 Port command okay

150 Opening data connection for STOR (192.168.2.1,1576)

6. Verify the transfer by a message displayed indicating a successful file transfer.

226 File sent OK

ftp: 917504 bytes sent in 2.31Seconds 396.50Kbytes/sec.

7. Type bye to exit the FTP session.

ftp> bye

Language Files

Using any FTP client, perform the following steps to load default web pages:

- 1. Change your directory to the PC directory where the factory default file is stored.
- 2. Type: FTP x.x.x.x (The controller Working IP Address is 192.168.2.1).

ftp 192.168.2.1

Connected to 192.168.2.1 220 NE843 FTP Ready

3. Login as guest using the network administrator password (administrator).

User (192.168.2.1:(none)): **guest**

331 User name okay, need password

Password: administrator

230 Logged in

4. Change directory (cd) to the **custom** directory by typing: cd web.

ftp> cd custom

250 CWD command successful

5. Use the put command to copy the web pages to the controller.

ftp> put alt.lang

200 Port command okay

150 Opening data connection for STOR (192.168.2.1,1576)

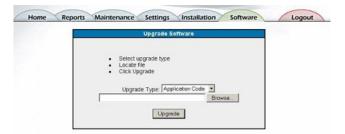
6. Verify the transfer by a message displayed indicating a successful file transfer.

226 File sent OK

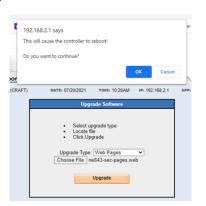
ftp: 917504 bytes sent in 2.31Seconds 396.50Kbytes/sec.

7. Type bye to exit the FTP session.

ftp> bye



Upgrade using Pulse Web pages


The software can also be uploaded through the web pages. Login into through the web pages as "administrator" and go to the "Software" tab and use the **"Upgrade Software"** tab feature button located at the bottom of the page. The sample screen is shown below.

Clicking the "**Upgrade Software**" button provides an interface to select which file is to be upgraded as well as a tool to help select the location of the file to FTP. Following is a sample screen.

When upgrading application code and web pages, the web pages should always be upgraded first, followed then by the application code after logging in a 2nd time after the automatic reboot that will occur. The following are some sample screens:

After upgrades of both the Web Pages and Application Code are complete, verify that both new codes now show on the top of each web page and on the Reports Tab -> Inventory page for the Controller.

Appendix B: T1.317 Command Language

Initializing Controllers

The Pulsar Plus family of controllers are highly flexible with many features. This section outlines programming the controller using the Hyper Terminal program that is shipped with most IBM compatible PC's. Connect the cable between the computer RS-232 port, and the controller RS-232 port, J3. After Hyper Terminal has started and the programming cable is connected to the controller and the PC, you will see the login screen that allows access to the controller programming features.

RS-232 Terminal/Modem Port

This interface provides a T1.317 interface for local or dial-out access. The local port DTR signal switches the port personality from modem to terminal. This interface provides access to all status, configuration, and operations. It also provides call-out on alarm capability.

The controller communicates with the modem using the following settings

Baud Rate: 9600

Data Bits: 8

Stop Bits:1

Parity: None

Three levels of security protect incoming access: user, super-user, and administrator. A user has read ability and can only get status information from the controller. A super-user can change configurations and perform control operations. An administrator has all the abilities of a

super-user but can also change passwords. All access to the controller is via the T1.317 command set, to be discussed later.

This section describes how to log into the system via an RS-232 local port. The first step to logging in is to get to an "ENTER PASSWORD:" prompt. From a terminal connected to the RS-232 port, simply press ENTER until you see the log-in prompt. The number of ENTER keys required will depend on the baud rate you are trying to connect at. The controller will adjust its baud rate automatically until it recognizes the carriage return character (ASCII 13) sent by pressing ENTER.

At the "ENTER PASSWORD:" prompt, type the user or super-user password. The default password for each level of security is listed below.

Default User password OmniOn Power™

Default Super-user password super-user

Default Administrator password administrator

After receiving the correct password, the controller will respond with one of the following command line prompts:

User command-line prompt: *

Super-user command-line prompt: **

Administrator command-line prompt: ***

When these prompts appear the controller is ready to accept commands. Note that the session will be terminated if the port is idle for 15 minutes.

T1.317 Command Language

The Pulsar Plus controller command language is based on the T1.317 standard. This section describes the commands, objects and attributes used to access measurements, configuration, and control parameters in the controller.

Objects and Attributes

The T1.317 standard organizes system parameters called attributes into groups called objects. All commands, objects, attributes and ranges for their respective parameters for the controllers are given in the following tables.

An object-attribute pair uniquely identifies a measurement, configuration, or control parameter. For example, the object-attribute pair "dcl,vdc" identifies the plant voltage while the object-attribute pair "dcl,adc" identifies the plant load current. In each of these examples "dcl" identifies the plant object and "vdc" and "adc" identify DC voltage and DC current, respectively.

There are three main commands involved with plant operations in the system controller command set. The command "sta" is used to get the status of the plant, the command "cha" is used to change a plant parameter, and the command "ope" is used to initiate a plant function. A person at the "user" level can only perform the sta operations. A person at the "super-user" and "administrator" level can also perform the "cha" and "ope" operations.

Instructions in the T1.317 command set take the following form:

command object, attribute [=parameter].

Certain commands do not require a value for parameter, while others do. Note that text parameters are to be enclosed in quotation marks while numeric parameters are not to be enclosed in quotation marks.

For example, to obtain the plant voltage, type in the following command:

sta dc1,vdc

To enable low-temperature slope thermal compensation, type in the following command:

cha sc1,rve=1

To change the voltage at which the LVD contactor disconnects the batteries from the load to 40V, type the following:

cha cn1,dth=40

To initiate a manual boost charging, i.e., place the plant into boost charging mode, type in the following command:

ope dc1,stt="boost"

The tables below summarize the object-attribute pairs in the system along with the commands that can be used with the pair and the valid range that the attribute may have. The values in bold text are the default settings for the attributes. Attributes with an * are once that it requires administrator privileges to change.

obj,attr	description	sta	cha	ope	type	Range of Values
ps1,ide	Identifier				text	PS1
	Power system	V			text	
ps1,des	description				text	"NE843"
ps1,sid	Site ID	√	√¹		text	Up to 20 characters
ps1,sde	Site Description	√	√¹		text	Up to 55 characters
ps1,sys	System Description	√			text	Up to 55 characters
ps1,swv	Software version	√			text	d.d
ps1,verw	Web pages version	√			text	d.d
ps1,verb	Boot block version	√			text	d.d
ps1,verd	Display version	√			text	d.d
ps1,dflt	Defaults version	√			text	d.d
ps1,brc	Board code	$\sqrt{}$			text	un
ps1,sn	Serial number	√			text	YYLLdddddddd
ps1,cc	Ordering Code	√			text	11 characters long
ps1,clei	Clei Code	√			text	
ps1,ser	Series	√			text	
ps1,dow	Day of week	√			Text	SundaySaturday
ps1,dat	Date	V	√¹		date	format matching ps1,dtf
ps1,dtf	Date format	√	√1		text	mm-dd-yyyy, dd-mm-yyyy, yyyy- mm-dd
ps1,tim	Time	√	√¹		time	hh:mm
ps1,tmf	Time format	√	√¹		number	12, 24
ps1,dls	Daylight savings enable	√	√¹		number	0=disabled 1=enabled
ps1,tzo	Time Zone Offset in Minutes	√	√		number	
2.1		,	,	,		ENGLISH, OTHER
ps1,lng	Language	√	√	√	text	OPE changes the descriptions
ps1,lngl	Language list	√			text	Comma deliminated list of languages
ps1,tun	Temperature units	√	√¹		text	C, F
Ps1,cem	Critical equals major	√	√		number	0=disable, 1=enable
ps1,fpc	Front panel configuration	√	√		number	0=disable, 1=enable
ps1,rrf	Remote rectifier off	√	√		number	0=disable, 1=enable
ps1,poe	Power off enable	√	√		number	0=disable, 1=enable
ps1,usl	Uninstall missing equipment	√		√	number	1
ps1,usr	Username enable	√	$\sqrt{2}$		number	0=disable, 1=enable
ps1,dct	Display contrast	√	√¹		number	0 – 100 %
ps1,ptt	Communication port type	√	√		text	"LOCAL","MODEM", "MODBUS"
ps1,amt	System ambient temperature	√			number	dd °C
ps1,nhat	System next highest ambient temperature	√			number	dd °C
ps1,lamt	System lowest ambient temperature	√			number	dd °C

Table B-1 T1.317 Power System Related Commands (PS)

obj,attr	description	sta	cha	ope	type	Range of Values
ps1,nat	Number of ambient	\checkmark			number	0-16
	temperatureprobes			п		
ps1,fst ps1,fstl	Factory defaults Factory defaults list	√ √		√¹	text text	See ps1,fstl Comma deliminated list of defaults
ps1,1st1	Password rules	V √	√		text	Corrilla delli fili lated fist of defaults
psl,rap	Reset Passwords	√ √	V	√	number	1 = reset passwords (OPE only valid from local display) will restore passwords.gal
ps1,fpe	Front Panel Pin enable	\checkmark	$\sqrt{2}$		number	0=disable, 1=enable
ps1,fpt	Front Panel Pin Time- out	√	$\sqrt{2}$		Number	1-120 minutes
Ps1,fpp	Front Panel Pin	\checkmark	$\sqrt{2}$		Number	4 digit Pin (only viewable as admin)
ps1,rss	Restart all	\checkmark		√	number	1=restart rectifiers and ringers
ps1,blr	Lamp test/bay lamp relay	√	√		text	"", "R1,"R2", "R3", "R4", "R5","R6", "R7"
ps1,ltt	Lamp test	√		√	number	1 = do lamp test
ps1,ast	System alarm state	√			Text	"NORM, "RO", "WRN", "MIN","MAJ", "CRIT"
ps1,slv	Port security level	√			text	
Ps1,dss	Daylight saving start	\checkmark	√		d:d:d:d	mon:wk:dow:minmon:-1:dom:min
Ps1,dse	Daylight saving end	√	√		d:d:d:d	mon:wk:dow:minmon:-1:dom:min
Ps1,uet	Uninstall Timeout	√	√		Number	0-60 seconds
ps1,ledl	List for LED alarm attribute	√			text	Comma deliminated list of LEDs
ps1,intl	List for input types attribute	√			text	Comma deliminated list of input types
ps1,accl	List for ACC alarm attribute	√			text	Comma deliminated list of Relays
ps1,cid	Controller assigns IDs	\checkmark	√		number	0=disable, 1=enable
ps1,pla	Port lockout max attempts	√	√		text	3-10
ps1,plt	Port lockout time in minutes	√	√		text	
ps1,ere	Enhanced Relays enable	√	√		number	0=disable, 1=enable
ps1,nal	Total Number of alarms active	√			Number	
ps1,ncr	Number of Critical alarms active	√			Number	
ps1,nmj	Number of Major alarms active	√			Number	
ps1,nmn	Number of Minor alarms active	√			Number	
ps1,nwa	Number of Warnings active	√			Number	

Table B-1 T1.317 Power System Related Commands (PS) (continued)

obj,attr	description	sta	cha	ope	type	Range of Values
ps1,nre	Number of Record- only eventsactive	√			Numbe r	
ps1,ind	Industrial Controller	√			Numbe r	0 = not industrial controller, 1 = industrial controller
ps1,npv	Nominal plant voltage	√			Numbe r	125 when 125 volt controller. 0 otherwise
ps1,ftr	Feature Vector	V		V	number	Bitfield represented as any combination below: A is for all items or always, displayed as blank, internally =0x80000000 R = Rectifiers =0x00000001 C = Converters =0x00000002 G = Ringers =0x00000004 N = Inverters =0x00000008 M = Modem =0x00000010 I = Inputs(MSV) =0x00000020 V = VIM=0x00000040 D = DAS =0x00000080 F = FTTN =0x00000100
ps1,dfv	Discovered Feature Vector	√		√	number	L = PowerShift =0x00000200 T=Telecom/Datacenter=0x00000400 Bitfield represented as any combination below: A is for all items or always, displayed as blank, internally =0x80000000 R = Rectifiers=0x00000001 C = Converters=0x00000002 G = Ringers=0x00000004 N = Inverters=0x00000008 M = Modem =0x00000010 I = Inputs(MSV)=0x00000020
						V = VIM=0x00000040 D = DAS=0x00000080 F = FTTN=0x00000100 L = PowerShift=0x00000200 T=Telecom/Datacenter=0x00000400

Table B-1 T1.317 Power System Related Commands (PS) (continued)

^{*} Must have administrator privileges to change.

¹User for craft port only

²Administrators only

obj,attr	Description	sta	cha	ope	type	Range of Values
x,ide	Identifier	\checkmark			text	USR01-USR14, ADM1
x,des	Description	√	√		text	User Account 1-14 Administrator Account
x,pwd	Password	$\sqrt{1}$			text	15 characters
x,usr	User name	$\sqrt{}$	$\sqrt{1}$		text	15 characters
x,lvl	Security level	$\sqrt{}$	√¹		text	"USER", "SUPER-USER", "ADMINISTRATOR"

Table B-2 T1.317 User Login Related commands (USR)

¹Administrator only

obj,attr	Description	sta	cha	Ope	type	Range of Values
Acd1,ide	Identifier	√			text	ACD1
Acd1,des	Description	√	√		text	AC Distribution
Acd1,brc	Board code	√			text	un
acd1,sn	Serial number	√			text	YYLLdddddddd
Acd1,prd	Phase R description	√	√		text	Up to 20 characters
Acd1,psd	Phase S description	√	√		text	Up to 20 characters
Acd1,ptd	Phase T description	√	√		text	Up to 20 characters
Acd1,prv	Phase R voltage	√			number	ddd.d V
Acd1,psv	Phase S voltage	√			number	ddd.d V
Acd1,ptv	Phase T voltage	√			number	ddd.d V
Acd1,pra	Phase R current	√			number	dd.d A
Acd1,psa	Phase S current	√			number	dd.d A
Acd1,pta	Phase T current	√			number	dd.d A
Acd1,prx	Phase R current transformer ratio	√	√		number	Ratio P:S, P 1-5000, S 1-5
Acd1,psx	Phase S current transformer ratio	√	√		number	Ratio P:S, P 1-5000, S 1-5
Acd1,ptx	Phase T current transformer ratio	√	√		number	Ratio P:S, P 1-5000, S 1-5
Acd1,prf	Phase R frequency	√			number	dd.d Hz
Acd1,psf	Phase S frequency	√			number	dd.d Hz
Acd1,ptf	Phase T frequency	√			number	dd.d Hz
Acd1,prk	Phase R power	√			number	dd.dd kW
Acd1,psk	Phase S power	√			number	dd.dd kW
Acd1,ptk	Phase T power	√			number	dd.dd kW
Acd1,syk	System power	√			number	dd.dd kW

Table B-3 T1.317 AC Distribution Related Commands (ACD)

obj,attr	description	sta	cha	ope	type	Range of Values
dc1,ide	Identifier	$\sqrt{}$	O.H.C.	_,	text	DC1
dc1,des	Description		√		text	DC Plant 1
dc1,typ	Plant Type	V	V	$\sqrt{1}$	number	48V, 24V
dc1,vdc	Plant voltage	V	V	$\sqrt{}$	number	dd.dd V
dc1,adc	Plant load current	V		$\sqrt{}$	number	ddd.d A
dc1,cap	Total installed rectifier capacity	√ √		v	number	ddd.d A
dc1,olcap	Total on-line rectifier capacity	√			number	ddd.d A
dc1,trd	Plant total rectifier drain	√			number	ddd.d A
dc1,sht	Centralized plant shunt type	√	√		Text	"NONE", "BATTERY", "LOAD"
dc1,sha	Centralized plant shunt size	√	√		Number	0=disabled 1-9999
dc1,stt	Plant state	√		$\sqrt{2}$	text	"FLOAT", "BOOST"
dc1,bod	Battery on discharge	√			number	0=on discharge 1=not on discharge
dc1,bdt	Time on discharge	V			Time	Duration hh:mm:ss
dc1,rss	Rectifier restart	V		√	number	0=no action 1=restart
dc1,rsq	Rectifier sequencing	V	√		number	0=disable 1=enable
dc1,aseq	Automatic Sequencing Enable	√	√		number	0=disable 1=enable
dc1,ron	User Group TR request	√		$\sqrt{2}$	Number	0-3 LSB = User, MSB=PBT
dc1,bofe	BOF Enable	V	√	•	number	0=disable 1=enable
dc1,rot	All Rectifier On Threshold	√	√		number	20-25or 40-50 volts
dc1,nst	Number of battery strings	√	√¹		number	1-70
dc1,cps	Number of Cells per String	√	√		number	1-75 (24V plant) or 24 (48V plant)
dc1,bty	Battery type	√	√¹	$\sqrt{1}$	Text	See battery type definitions default (OPE causes battery defaults to be loaded)
dc1,isd	Imminent shutdown enable	√	√		number	0=disable 1=enable
dc1,isy	Imminent shutdown delay	√	√		number	2-300 seconds, default:15
dc1,rtm	Actual reserve time	√			text	Low Current-Batt current too low High Current-Batt current too high dd.d (in hours)
dc1,poc	State of charge	√			number	Percentage 0 – 100%
dc1,scap	String capacity	√			number	
dc1,mls	All load shunts monitored	√	√		number	0=disable 1=enable
dc1,ems	Efficiency management status	√			Number	0=off, 1=on
dc1,eme	Efficiency management enable	√	√		Number	0=disable, 1=enable
dc1,emt	Efficiency target	√	√		Number	20 to 95 %
dc1,emo	Efficiency turn on rectifierthreshold	√	√		Number	25 to 100 %
dc1,emi	Efficiency initial delay	√	√		Number	1 to 30 minutes
dc1,emw	Efficiency delay	√	√		Number	1 to 30 minutes

Table B-4 T1.317 DC Plant Related Commands (DC)

obj,attr	Description	sta	cha	ope	type	Range of Values
objid,ide	Identifier	\checkmark			text	see below
objid,des	Description	√	√		text	see below
objid,fds	Front Panel Descrip- tion	√	√		text	see below
objid,ast	Alarm state	√			number	0=not active 1=active
objid,led	LED	√	√		text	BD, AC, DC, ""
objid,sev	Alarm severity	√	√		text	CRIT, MAJ, MIN, WRN, RO
objid,fth	Alarm boost threshold	√	√		number	see below
objid,bth	Alarm float threshold	√	√		number	see below
objid,acc	Contact Closure	√	√		text	R1, R2, R3, R4, R5 ,R6, R7, ""
objid,dly	Notify Delay	√	√		number	0-540 seconds
objid,noo	Notify On Occur	√	√		number	0=no 1=yes
objid,nor	Notify On Retire	√	√		number	0=no 1=yes
objid,nag	NAG On Occur	√	√		number	0=no 1=yes
objid,dst	Notify Destination	√	√		text	"", P1, P2, P3, P4, E1, E2, E3, E4,S1, S2, S3, S4

Table B-5 T1.317 Alarms with Two Thresholds Related Commands (DTH)

objid	Description	Float Threshold	Boost Threshold
bdal	Pattory On Discharge	23-28 V	23-28 V
bdal	Battery On Discharge	or 46-55 V	or 46-55 V
hfv1	Lligh voltage	24.75-29.75 V	25.75-31.75 V
HIVI	High voltage	or 50-60 V	or 52-60 V
byal	Very bigh veltage	24.75-29.75 V	25.75-31.75 V
hval	Very high voltage	or 50-60 V	or 52-60 V

obj,attr	Description	sta	cha	ope	type	Range of Values
objid,ide	Identifier	\checkmark			text	see below
objid,des	Description	√	√		text	see below
objid,fds	Front Panel Description	√	√		text	see below
objid,ast	Alarm state	\checkmark			number	0=not active 1=active
objid,sev	Alarm severity	\checkmark	\checkmark		text	CRIT, MAJ, MIN, WRN, RO
objid,thr	Alarm threshold	√	√		number	number
objid,led	LED	√	√		text	BD, AC, DC, ""
objid,acc	Contact Closure	\checkmark	√		text	R1, R2, R3, R4, R5, R6, R7, ""
objid,dly	Notify Delay	\checkmark	√		number	0 -540 seconds
objid,noo	Notify On Occur	√	√		number	0=no l=yes
objid,nor	Notify On Retire	√	√		number	0=no 1=yes
objid,nag	NAG On Occur	√	√		number	0=no l=yes
objid,dst	Notify Destination	√	√		text	"", P1, P2, P3, P4, E1, E2, E3, E4,S1, S2, S3, S4

Table B-6 T1.317 Alarms With One Threshold Related Command (STH)

objid	Description	Threshold
amth1	High ambient temp	30-75C
amtl1	Low ambient temp	-40-10C
btvh1	Very high battery temperature	30-85C
bthal	High battery temperature	30-85C
btla1	Low battery temperature	-40-10C
btvl1	Very low battery temperature	-40-10C
cmfal	Multiple Converter Fail	2-16
chval	Converter Very High Output Voltage	25-30V
Crivar	Converter very High Output voltage	50-60V
chfv]	Caravartar High Outrast Valtage	24-30V
Chivi	Converter High Output Voltage	48-60V
		20 - 27V
cvlal	Converter Very Low Output Voltage	40 - 54V
crll	Converter redundancy loss	1-16
gnml	Generator Requires Maintenance	0-8544 hours (1 year)
_	·	0 =disabled
ICF1	Inverter High Crest Factor	0-3.2
IIPK1	Inverter High Peak Current	0-28A
IIRM1	Inverter High RMS Current	0-15A
macfl	Multiple AC Fail	2-88
mfal	Multiple Rectifier Fail	2-88
mmanl	Multiple Manual Off	2-88
rrtl1	Real-time reserve low	0-100hrs
rtl1	Reserve time low	0-100hrs
rlsl	Redundancy Loss	1-87
vla1	Very low voltage	20-25.5 V 40-51 V

obj,attr	Description	sta	cha	ope	type	Range of Values
objid,ide	Identifier	√			text	see below
objid,des	Description	√	√		text	see below
objid,fds	Front Panel Description	√	√		text	see below
objid,ast	Alarm state	$\sqrt{}$			number	0=not active 1=active
objid,sev	Alarm severity	√	√		text	CRIT, MAJ, MIN, WRN, RO
objid,led	LED	√	√		text	BD, AC, DC, ""
objid,acc	Contact Closure	√	√		text	R1, R2, R3, R4, R5, R6, R7, ""
objid,dly	Notify Delay	√	√		number	0-540 seconds
objid,noo	Notify On Occur	√	√		number	0=no 1=yes
objid,nor	Notify On Retire	√	√		number	0=no 1=yes
objid,nag	NAG On Occur	√	√		number	0=no 1=yes
objid,dst	Notify Destination	√	√		text	"", P1, P2, P3, P4, E1, E2, E3, E4,S1, S2, S3, S4

Table B-7 T1.317 Alarms with No Threshold Related Commands (NTH)

obj	Description
AAC1	ACO Active
ACF1	AC Fail
АМЈІ	Auxiliary Major
ATAI	Alarm Test Active
ATB1	Alarm Test Aborted
AUX1	Air Conditioner Fail
AUX2	Door Open
AUX3	High External Ambient
AUX4	Low External Ambient
AUX5	Fan Fail
AUX6	Hydrogen present
AUX7	Auxiliary 7
AUX8	Auxiliary 8
AUX9	Auxiliary 9
AUX10	Auxiliary 10
AUXII	Auxiliary 11
AUX12	Auxiliary 12
BBL1	Real Time Clock Battery Low
BOF1	Backup ORing FET fail
BFA1	Check Battery
BTA1	Battery Test Active
CCH1	Configuration Changed
CDFAI	Converter Distribution Fuse
CDID1	Converter ID Conflict
CFA1	Converter Fail
CFN1	Converter Fan Minor
CLC1	Clock Changed
CLM1	Rectifier Current Limit
CMAI	Minor Communication Fail Alarm
CNF1	LVBD 1 Failed
CNF2	LVLD 1 Failed
CNF3	LVLD 2 Failed
CNF4	LVLD 3 Failed
CNO1	LVBD 1 Open
CNO2	LVLD1 Open

obj	Description
CNO3	LVLD 2 Open
CNO4	LVLD 3 Open
COF1	Queue Overflow
CORI	No Call-Out Response
DERI	Rectifier Under Voltage
DIDI	ID Conflict
EMD1	Energy Management Disabled
EPO1	Emergency Power Off
EPR1	External Password Reset
EXLI	Excessive Login Attempts
FAJI	External Fuse Major 24V
FAJ2	External Fuse Major 48V
FAN1	External Fuse Minor 24V
FAN2	External Fuse Minor 48V
GNR1	Generator Running
GNF1	Generator Fail
HCL1	History Cleared
ICC1	Incompatible Converter
ICR1	Incompatible Rectifier
IDA1	Inverter Distribution Alarm
IF1	Inverter Fail
IFAI	Inverter Freq Lock
IHV1	Inverter High Output
IHVII	Inverter High Input
ILV1	Inverter Low Output
ILVII	Inverter Low Input
IMAN1	Inverter Manual Off
IOF1	Inverter Output Fuse
ISD1	Imminent Low V Shutdown
ITAI	Inverter High Temperature
LSF1	Load Share Fail
MANI	Manual Off
MCM1	Major Communication Fail Alarm
MDPI	Voltage Duplicate ID
MZD1	Voltage ID Not Configured

obj	Description
NNCI	Unconfigured Alarm Destination
OSA1	Open String
PFD1	Password At Default
PFS1	Thermal Probe Fail Safe
PGI1	Program Line Invalid
PHT1	Processor Halt
PORI	No Dial-Out Response
RBAI	Reverse Battery
RCDP1	Ringer ID Conflict
RF1	Ringer Fail
RFA1	Rectifier Fail
RFNI	Rectifier Fan Fail
RIFI	Rectifier Internal Fault
RPFF1	Ringer Fan Fail
RPFJI	Ringer Fail Major
RPRL1	Ringer Redundancy Loss
RPXJI	Ringer Major External Fault
RPXN1	Ringer Minor External Fault
SCD1	Battery Voltage Imbalance
SOF1	Shorted ORing FET
STF1	Self Test Failed
TPA1	Thermal Probe Failure
VMF1	Voltage Channel Failure
VSF1	Sense/Control Fuse
ZID1	ID Not Configured
VID1	DBY ID Not Configured
PMF1	Probe Minimum fail
FAJAI	Fuse Alarm A
FAJB1	Fuse Alarm B
VLVA1	Power Loss A
VLVB1	Power Loss B
OVLAI	Overload A
OVLB1	Overload B
SMW1	Shunt Miswired
CCAI	Circuit Assignment

obj	Description
DOORI	Door Open
SMO1	Smoke Detect
HYDI	Hydrogen Detect
ASPD1	AC SPD
DSPD1	DC SPD
PGND1	Positive Ground Fault
NEG1	Negative Ground Fault
DIFI	DAS Internal Circuit Fail
OPS1	DAS Over Power Shutdown
OCS1	DAS Over Current Shutdown
SCS1	DAS Short Circuit Shutdown
IOR1	DAS Input Out of Range
PEID1	DAS ID Conflict
OTS1	DAS Over Temperature Shutdown
LDRI	DAS Load Dropped
DFAN1	DAS Fan Failure
REVI	DAS Input Reversed 1
REV2	DAS Input Reversed 2
IVOR1	DAS Input out of range 1
IVOR2	DAS Input out of range 2
RSF1	PowerShift Single Fan Fail
RMF1	PowerShift Multiple Fan Fail
RMT1	PowerShift Module Over Temperature
RFF1	PowerShift Fuse Fail
RIO1	PowerShift Interlock Open
LUVI	PowerShift Upper Voltage
LRES1	PowerShift High Resistance
LVNL1	PowerShift Voltage Not Linked
LPRII	PowerShift Primary fault
RRIDI	PowerShift ID Conflict
ARF1	PowerShift Auto Resistance Fail
RCO1	PowerShift Circuit Over Temperature
ROLI	PowerShift Overload
ROVI	PowerShift Output out of range
LRLSI	PowerShift Redundancy Loss

obj	Description
ICLD	Incompatible PowerShift Module
TPT1	PowerShift Packet Timeout
TH2O1	PowerShift H2O
TINT1	PowerShift Intruder
LPT1	PowerShift Power
TBC1	PowerShift Upper to Lower Communication Error
DIF1	PE Internal Circuit Fail
OPS1	PE Over Power Shutdown
OCS1	PE Over Current Shutdown
SCS1	PE Short Circuit Shutdown
IOR1	PE Input Out of Range
PEIDI	PE ID Conflict
OTS1	PE Over Temperature Shutdown
LDRI	PE Load Dropped
DFAN1	PE Fan Failure
REV1	PE Input Reversed 1
REV2	PE Input Reversed 2
IVOR1	PE Input out of range 1
IVOR2	PE Input out of range 2
BFAN	BMIC Fan
вню	BMIC Hi Output Exceeded
ВМХТ	BMIC Max Temp Exceeded
BMNT	BMIC Min Temp Exceeded
BFAN	BMIC Fan
BMF	BMIC Fail
BMIL	BMIC Interlock Fail
ВМОТ	BMIC Over Temperature
BMLF	BMIC Life
ВМОС	BMIC Over Current
BMDL	BMIC Discharge Cycle Limit
BMDE	BMIC Discharge Cycles Exceeded 120%
BMLV	BMIC Low Internal String Voltage
ATFT	BMIC Anti-Theft
ВМСВ	BMIC Circuit Breaker

obj	Description
BMUV	BMIC Under Voltage
BMOV	BMIC Over Voltage
BCUB	BMIC Current Blocked
BMSC	BMIC Short Circuit
BMUT	BMIC Under Temperature

obj,attr	Description	sta	cha	ope	type	Range of Values
gm1,ide	Identifier	√			Text	GM1
gm1,des	Description	√	√		Text	Rectifier Manager 1
gm1,lse	Load Share Enable	√	√		number	0=disable 1=enable
gm1,nro	Total number of rectifiers on	√			number	
gm1,lst	Load share target percentage	√			number	0-100%
gm1,rme	Redundancy monitor enable	√	√		number	0=disable,1=enable
gm1,fsd	Float High Voltage Shutdown	√	√		number	25-30 or 50-60 V
gm1,bsd	Boost High Voltage Shutdown	√	√		number	26-30 or 52-60 V
gm1,fsp	Float Set-Point	√	√		number	21-28 or 42-56.5 V
gm1,bsp	Boost Set-Point	√	√		number	21-30 or 48-60 V
gm1,fcl	Float Current Limit	√	√		number	30-110%
gm1,bcl	Boost Current Limit	√	√		number	30-110%
gm1,oft	Oring FET test enable	√	√		number	0=disable,1=enable
gm1,wie	Walk-in enable	√	√		number	0=disable,1=enable
gm1,lsfe	Load share fail enable	√	√		number	0=disable,1=enable
gm1,sof	Shorted Oring Fet Test state/cmd	√		√	number	0=disable,1=enable

Table B-8 T1.317 Rectifier Management Related Commands (GM)

obj,attr	Description	sta	cha	ope	type	Range of Values
gsr,des	Description	√	√		text	Rectifier sr
gsr,typ	Rectifier Type	√	√		text	12 char
gsr,sn	Serial number	√			text	Up to 18 characters
gsr,cc	Ordering code	√			text	11 characters long
gsr,clei	Clei Code	√			text	
gsr,ser	Series	√			text	
gsr,verp	Primary software version	√			text	
gsr,vers	Secondary software version	√			text	
gsr,adc	DC Current (VI, VIR)	√			number	number A
gsr,vdc	DC Voltage	√			number	number V
gsr,stt	Individual rectifier state	√		√¹	text	ON, OFF, STANDBY, VACANT, MISSING
gsr,cap	Capacity	√			number	number A
gsr,vac	AC Voltage	√			number	number V
gsr,aac	AC Current	√			number	number A
gsr,tmp	Temperature	√			number	number F or C
gsr,rtm	Run time in hours	√			number	
gsr,van	Anode Voltage	√			number	number V
gsr,als	Analog Loadshare Debug	√			text	
gsr,seq	Use In Sequence Enable	√	√		number	0=no 1=yes
gsr,rfa	Rectifier Fail	√			number	O=inactive l=active
gsr,acf	AC Fail	√			number	O=inactive l=active
gsr,man	Standby or Manual Off	√			number	0=inactive 1=active
gsr,did	ID Conflict	√			number	0=inactive 1=active
gsr,bof	Backup ORing FET	√			number	O=inactive l=active
gsr,sof	Shorted ORing FET	√			number	0=inactive 1=active
gsr,der	Under Voltage	√			number	0=inactive 1=active
gsr,clm	Current Limit	\checkmark			number	0=inactive 1=active
gsr,rif	Internal fault	√			number	0=inactive 1=active
gsr,rcf	Communication Fail	√			number	0=inactive 1=active
gsr,rfn	Fan fail	√			number	0=inactive 1=active
gsr,lsf	Load share fail	√			number	0=inactive 1=active
gsr,ecap	ECO Capacity	√			number	number A
gsr,emod	ECO Mode	√			text	
gsr,mppt	MPPT state	√			number	0=no MPPT, 1= in MPPT
gsr,eofs	ECO Offset	√			number	
gsr,hin	High input	√			number	
gsr,lin	Low input	√			number	

Table B-9 T1.317 Rectifier Related Commands (G)

Page 148

¹ Super-user login required to place in standby. User login can turn on.

s stands for shelf number (1 to 6)

r stands for rectifier number (1 to 7)

obj,attr	Description	sta	cha	Ope	type	Range of Values
eco1,des	Description	√	√		text	Rectifier sr
ecol,sofs	Solar Offset	√		√	number	0.5 V
ecol,ncap	Normal Rectifier Capacity	√			number	Number A
ecol,nocap	Normal Online RectifierCapacity	√			number	Number A
eco1,ntrd	Normal Total Rectifier Drain	√			number	Number A
eco1,strd	Solar Total Rectifier Drain	√			number	Number A
eco1,nkwh	Normal kWh	√			number	Number kWh
eco1,skwh	Solar kWh	√			number	Number kWh

Table B-10 T1.317 ECO Priority Related Commands (ECO)

obj,attr	Description	sta	cha	Ope	type	Range of Values
gn1,des	Description	√	√		text	Backup Generator
gn1,mod	Generator Mode	√	√		text	OFF, ON
gn1,stt		√			text	OFF(AUTO, ON(AUTO), OFF(MAN), ON(MAN)
gn1,aue	Auto mode enabled	√	\checkmark		number	0=disable,1=enable
gn1,rt	Run time	√		√	number	hhhh:mm (OPE to 0)
gn1,trt	Run time of this run	√		√	number	hhhh:mm
gn1,tv	Start Voltage	√	√		number	19.25 - 28.25,40.25 - 56.50
gn1,tve	Start Voltage Enabled	√	√		number	0=disable,1=enable
gn1,tvd	Start Voltage Delay	√	√		time	
gn1,tp	Start Percent of Charge	√	√		number	10-100%
gn1,tpe	Start Percent of Charge Enabled	√	√		number	0=disable,1=enable
gn1,tpd	Start Percent of Charge Delay	√	√		time	
gn1,cte	Cold Temperature Enabled	√	√		number	0=disable,1=enable
gn1,tct	Start Cold Temperature	√	√		number	10-75 Degrees C
gn1,tctd	Start Cold Temperature Delay	√	√		time	
gn1,hte	Hot Temperature Enabled	√	√		number	0=disable,1=enable
gn1,tht	Start Hot Temperature	√	√		number	0-50 Degrees C
gn1,thtd	Start Hot Temperature Delay	√	√		time	
gn1,pv	Stop Voltage	√	V		number	21 - 30, 46 – 60
gn1,pve	Stop Voltage Enabled	√	√		number	0=disable,1=enable

Table B-11 T1.317 Generator Related Commands (GN)

obj,attr	Description	sta	cha	Ope	type	Range of Values
gn1,pvd	Stop Voltage Delay	\checkmark	\checkmark		time	
gn1,pi	Stop Current	$\sqrt{}$	\checkmark		number	2-1000 AA
gn1,pie	Stop Current Enabled	$\sqrt{}$	$\sqrt{}$		number	0=disable,1=enable
gn1,pid	Stop Current Delay	$\sqrt{}$	$\sqrt{}$		time	
gn1,pp	Stop Percent of Charge	√	√		number	10-100%
gn1,ppe	Stop Percent of Charge Enabled	√	√		number	0=disable,1=enable
gn1,ppd	Stop Percent of Charge Delay	√	√		time	
gn1,pct	Stop Cold Temperature	V	√		number	10-75 Degrees C
gn1,pctd	Stop Cold Temperature Delay	√	√		time	
gn1,pht	Stop Hot Temperature	$\sqrt{}$	\checkmark		number	0-50 Degrees C
gn1,phtd	Stop Hot Temperature Delay	\checkmark	√		time	
gn1,mrt	Minimum Run Time	$\sqrt{}$	$\sqrt{}$		time	
gn1,clt	Current Limit Threshold	√	√		number	5-1000 A
gn1,nv	Nominal Output Voltage	√	√		number	0-999 V
gn1,nva	Nominal Output Power	√	√		number	0-999000
gn1,ode	Manual On Duration Enabled	√	√		number	0=disable,1=enable
gn1,odr	Manual On Duration	$\sqrt{}$			time	
gn1,ocd	Manual On Remaining Time	√			time	

Table B-11 T1.317 Generator Related Commands (GN)

obj,attr	Description	sta	cha	ope	type	Range of Values
cp1,des	Description	√	√		Text	Converter Plant 1
cp1,typ	Converter output type	√			Text	24V or 48V
cp1,vdc	DC Voltage	√		\checkmark	Number	Number in volts
cp1,adc	DC Current	√			Number	Number in amps
cp1,cap	Installed capacity	√			Number	Number in amps
cp1,olcap	Online capacity	√			Number	Number in amps
cp1,vsp	Voltage Set-Point	√	√		Number	23-27.2V or 46-54.5V
cp1,vsd	Internal high voltage shutdown	√	√		Number	25-30V or 50-60V
Cp1,clm	Current Limit	√	√		Number	30% to 100%
cp1,dth	Low Voltage Discon Threshold	√	√		Number	20-25V or 40-50V
cp1,rth	Low Voltage Recon Threshold	√	√		Number	22-27V or 44-54V
cp1,lvd	Low Voltage Disconnect Enable	√	√		Number	0=disabled 1=enabled
Cp1,rof	Remote standby enable	√	√		number	0=disable,1=enable
cp1,rme	Redundancy monitor enable	√	√		number	0=disable,1=enable
cp1,rss	Converter restart	\checkmark		√	number	l=restart

Table B-12 T1.317 Converter Plant Related Commands (CP)

obj,attr	Description	sta	cha	ope	type	Range of Values
csr,des	Description	√	√		Text	DC Converter sr
csr,typ	Туре	√	√		Text	14 chars
csr,sn	Serial number	√			Text	Serial number
csr,adc	DC Current	√			Number	Number in amps
csr,cap	Capacity	√			Number	Number in amps
csr,stt	State	√		√1	Text	ON, OFF, STANDBY, MISSING, VACANT ON qualifiers –LIM OFF qualifiers –LVD, -INF, - TA, - HVSD, -FAN
csr,cfa	Converter Fail	√			Number	0=inactive 1=active
csr,dfa	Distribution fuse fail	√			Number	0=inactive 1=active
csr,did	ID Conflict	√			Number	0=inactive 1=active
csr,ccf	Communication Fail	√			Number	0=inactive 1=active
csr,cfn	Fan fail	√			Number	0=inactive 1=active

Table B-13 T1.317 DC Converter Related Commands (C)

r stands for rectifier number (1 to 6)

obj,attr	Description	sta	cha	Ope	type	Range of Values
ip1,des	Description	√	√		Text	Inverter Plant 1
ip1,cap	Installed capacity	√			Number	Number in amps
ip1,irm	RMS current	√			Number	Number in amps
ip1,vac	AC output voltage	√			Number	Number in volts
ip1,adc	Input DC current	√			Number	Number in amps
ip1,vdc	Input DC voltage	√			Number	Number in volts
ip1,frq	Output frequency	√			Number	Number in Hertz
ip1,lst	Load share target percentage	√			Number	0-100%
ip1,dth	Disconnect input voltage threshold	√			Number	20.00 - 25.00, 40.00 - 50.00
ip1,rth	Reconnect input voltage threshold	√			Number	22.00 - 27.00, 44.00 - 54.00
ip1,lvd	LVD enabled	√	√		Number	0=DISABLED, 1=ENABLED
ip1,hce	High Crest Factor enabled	√	√		Number	0=DISABLED, 1=ENABLED
ip1,hipe	High Ipeak enabled	√	√		Number	0=DISABLED, 1=ENABLED
ip1,hrme	High RMS enabled	√	√		Number	0=DISABLED, 1=ENABLED
ip1,ste	Standby enabled	√	√		Number	0=DISABLED, 1=ENABLED
ip1,rlse	Redundancy Loss enabled	√	√		Number	0=DISABLED, 1=ENABLED

Table B-14 T1.317 Inverter Plant Related Commands (IP)

 $^{^{\}rm 1}\,{\rm Super}\text{-}{\rm user}$ login required to place in standby. User login can turn on.

s stands for shelf number (0 to 1)

obj,attr	Description	sta	cha	Ope	type	Range of Values
nsr,des	Description	\checkmark	√		Text	Inverter sr
nsr,stt	State	√			Text	ON, OFF, STANDBY, MISSING, VACANT
nsr,sn	Serial number				Text	Serial number
nsr,ipk	Peak current	√			Number	Number in amps
nsr,irm	RMS current	√			Number	Number in amps
nsr,frq	Output frequency	√			Number	Number in Hertz
nsr,cf	Crest factor	\checkmark			Number	Number
nsr,pwr	Output power	\checkmark			Number	Number in volt amps
nsr,vnom	Nominal output voltage	√			Number	Number in volts
nsr,cap	Capacity	√			Number	Number in amps
nsr,cva	Capacity in VA	√			Number	Number in volt amps
nsr,vac	Output voltage	\checkmark			Number	Number in volts
nsr,adc	Input DC current	\checkmark			Number	Number in amps
nsr,vdc	Input DC voltage	√			Number	Number in volts
nsr,ncl	Non-critical load for LVD	√	√		Number	0=not placed in standby l=place in standby
nsr,ilvi	Low Voltage Input	\checkmark			Number	0=inactive 1=active
nsr,ita	Temperature alarm	\checkmark			number	0=inactive,1=active
nsr,if	Inverter fail	\checkmark			number	0=inactive,1=active
nsr,ilv	Low output voltage	\checkmark			number	0=inactive,1=active
nsr,ifa	Inverter frequency lock fail	√			number	0=inactive,1=active
nsr,ihvi	High input DC	√			number	0=inactive,1=active
nsr,ihv	High output	\checkmark			number	0=inactive,1=active
nsr,iirm	High Irms	\checkmark			number	0=inactive,1=active
nsr,iipk	High Ipeak	\checkmark			number	0=inactive,1=active
nsr,icf	High crest factor	\checkmark			number	0=inactive,1=active
nsr,ida	Distribution alarm	\checkmark			number	0=inactive,1=active
nsr,iof	Output fuse	√			number	0=inactive,1=active
nsr,did	Duplicate Id	√			number	0=inactive,1=active
nsr,icmf	Communication Failure	√			number	0=inactive,1=active
nsr,vera	Module Software Version	√			text	Format: xxxxxxxx
nsr,verb	Bridge board Software Version	\checkmark			text	Format x.y

Table B-15 T1.317 Inverter Related Commands (N)

s stands for shelf number (1 to 4)

r stands for rectifier number (1 to 7)

obj,attr	Description	sta	cha	Ope	type	Range of Values
rp1,ide	Identifier	\checkmark			number	RPI
rp 1,des	Description	\checkmark	√		number	Ringer Plant 1
rp 1,frq	Ringer output fre- quency	√	√		number	15-50Hz
rp 1,vsp	Ringer voltage set- point	√	√		number	65-100V
rp 1,ofe	Ringer offset enable	\checkmark	√		number	0=disable,1=enable
rp 1,rme	Redundancy monitor enable	√	√		number	0=disable,1=enable
rp 1,rss	Ringer restart	\checkmark		\checkmark	number	l=restart
rp 1,va	Ringer plant va	\checkmark			number	
rp 1,cap	Ringer capacity	\checkmark			number	Number A
rp 1,olcap	Ringer online capacity	√			number	Number A
rp 1,rrf	Standby enable	\checkmark		√	number	0=disable,1=enable

Table B-16 T1.317 Ringer Plant Related Commands (RP)

obj,attr	Description	sta	cha	Ope	type	Range of Values
rcn,ide	Identifier	\checkmark			number	RC1-RC8
rcn,des	Description	\checkmark	$\sqrt{}$		number	Ringer Chassis 1-8
rcn, ptyp	Primary Ringer Type	\checkmark			text	12 char
rcn, psn	Primary Ringer Serial Number	\checkmark			text	Up to 18 characters
rcn, pstt	Primary Ringer State	√			number	ON –FAN, OFF –FAIL, -EXT, -TA, -RET, -FAN, STANDBY, MISSING
rcn, styp	Secondary Ringer Type	\checkmark			text	12 char
rcn, ssn	Secondary Ringer Serial Number	√			text	Up to 18 characters
rcn, sstt	Secondary Ringer State	V			number	ON –FAN, OFF –FAIL, -EXT, -TA, -RET, -FAN, STANDBY, MISSING
rcn,stt	Ringer group state	√		√	number	ON –FAN, -REDUN OFF –FAIL, -EXT, -TA, -RET, -FAN, STANDBY, MISSING The ope command supports the
	D:	,				ON and STANDBY states
rcn,va rcn,cap	Ringer output va Ringer capacity	√ √			number number	dd.d VA Chassis capacity - Set to100 VA if primary or secondary is present
rcn,pri	Primary ringer	V			text	sr where s is the shelf number r is the ringer position 1=first primary ringer 3=second primary ringer First ringers are in the odd shelf slot.Second ringers are in the even shelf slot.

Table B-17 T1.317 Ringer Chassis Related Commands (RC)

obj,attr	Description	sta	cha	Ope	type	Range of Values
rcn,sec	Secondary ringer	V			text	sr where s is the shelf number r is the ringer position 2=first secondary ringer 4=second secondary ringer First ringers are in the odd shelf slot. Second ringers are in the even shelfslot
rcn,rf	Ringer Fail	√				0=inactive l=active
rcn,rpff	Ringer Fan Fail	\checkmark				0=inactive 1=active
rcn,rpxj	Ringer External Minor Fault	√				O=inactive 1=active
rcn,rpxn	Ringer External Major Fault	√				O=inactive 1=active
rcn,rprl	Ringer Redundancy Loss	√				O=inactive 1=active
rcn,rpfj	Ringer major Fail	√				0=inactive 1=active
rcn,rcdp	Ringer ID Conflict	√				0=inactive 1=active

Table B-17 T1.317 Ringer Chassis Related Commands (RC)

obj,attr	Description	sta	cha	ope	type	Range of Values
br1,des	Description	√	√		Text	Battery Reserve 1
br1,adc	Total battery current	√			number	d A (+ for discharge, - for charge)
br1,hbt	Highest battery temperature	√			number	dd °C
br1,lbt	Lowest battery temperature	√			number	dd °C
br1,cap	Installed battery capacity	√			number	ddddd AH
br1,olcap	On-line battery capacity	√			number	ddddd AH
br1,btr	Discharge test results	V			text	result, reserve, load result is one of the following: COMPLETED CHECK BATTERY INTERRUPTED ACTIVE NOT RUN reserve is hours calculate by lastcomplete test load is load at beginning of test
br1,tth	High Temperature Threshold	√	√		Number	30-90°C or 86-194°C
br1,cle	Current Limit Enable	√	√		number	0=disable 1=enable
br1,clt	Current Limit Threshold	√	√		number	5-1000A
br1,cev	Battery string end of discharge V	√	√¹		Number	19.25-25.35V or 40.25-48.75V

Table B-18 T1.317 Battery Reserve Management Related Commands (BR)

obj,attr	Description	sta	cha	ope	type	Range of Values
br1,cev	Battery string end of	V	√¹		Number	19.25-25.35V
DI I,CeV	discharge V	V	V		Number	or 40.25-48.75V
br1,bts	Battery Test State	√		$\sqrt{1}$	number	0=inactive 1=active
br1,mtt	Manual test type	√	$\sqrt{1}$		text	DISABLED, 20%, TIMED
br1,tev	Manual test alarm voltage	√	√¹		number	21-27V or 36-48 V
br1,tmd	Manual test duration	√	$\sqrt{1}$		time	00:00:00 to 23:59:59 (hh:mm:ss)
br1,bte	Auto test type	√	√		text	DISABLED, 20%, TIMED
br1,btv	Battery test rectifier voltage	√	√¹		number	21-26 V or 42-52 V
brl,ath	Auto test start hour	√	√		number	0-23
br1,tin	Auto test interval	√	√		number	1-18 months
br1,atw	Auto test min hours after BD	√	√		number	0-240 hours
br1,atd	Auto test date	√	√		date	dd-mmm-yy
br1,nvm	Number of mid-cell V present	√				d
br1,ntm	Number of temperatures present	√				d
br1,scd	Battery voltage imbalancedetection enable	√			number	0=disable, 1=enable (Automatically enabled when midcell V monitor present)
br1,scv	Battery imbalance threshold	√	√		number	1.5-3.0V

Table B-18 T1.317 Battery Reserve Management Related Commands (BR)

¹ User Level for craft por t only

obj,attr	Description	sta	cha	ope	type	Range of Values
btnn,des	Description	√	√		Text	Battery Configuration 1 to 25
btnn,bty	Battery Type	\checkmark	√		Text	Up to 14 characters
btnn,btc	Battery Class	√	√		Text	FLOODED, SEALED, NICD,LI_LMP, SODIUM
btnn,cap	Capacity	√	√		Number	dddd

Table B-19 T1.317 Battery Type Definition Related Commands (BT)

Where n stands for battery type number(1 thru 25)

obj,attr	Description	sta	cha	Ope	type	Range of Values
Bnn,des	Description	\checkmark	√		Text	Battery String 1 to 70
Bnn,con	Battery Contactor	√	√		Text	DCN01 to DCN08
bnn,stt	State	√			text	NONE MISSINGOPEN CLOSED
bnn,nst	Number of strings	√	√		number	1 to 70
bnn,bty	Battery type	√	√		text	See battery type definitions
bnn,cap	Capacity	√			number	dddd
bnn,dat	Installed date	√	√		date	Defined by date format

Table B-20 T1.317 Battery String Related Commands (B)

Battery string are addable

obj,attr	Description	sta	cha	ope	type	Range of Values
bs1,ide	Identifier	√			Text	BS1
bs1,des	Description	√	√		Text	Boost Control 1
bs1,stt	State	√	√		Text	QRCT, MANUAL, BTP, TIMEDAU-TO, OFF
bs1,atm	Auto Mode	√	√		Text	OFF, QRCT, TIMED
bs1,tmd	Timed Manual Duration	√	√		Number	1-80 hours
bs1,amf	Auto Multiplication Factor	√	√		Number	0.1-9
bs1,cta	Current Term Current Thresh	√	√		Number	1-999A

Table B-21 T1.317 Boost Management Related Commands (BS)

obj,attr	Description	sta	cha	ope	type	Range of Values
cnx,ide	Identifier	√			number	CN1, CN2, CN3, CN4
cnx,des	Description	√	√		number	Contactor 1
cnx,stt	Status	√		√1	text	NONE, DISCON, CONNECT, FAILED
cnx,ena	Control enable	√	√			0=disable,1=enable
cnx,dth	Disconnect threshold	√	√		number	19-25V or 39-50V
cn <i>x</i> ,dvx	Vmax in adaptive mode	√	√		number	39V to 50V
cnx,dvt	Calculated disconnect voltage	√			number	Vmin to Vmax
cnx,din	Imin in adaptive mode	√	√		number	0A to 9999A
cn <i>x</i> ,dix	Imax in adaptive mode	√	√		number	0A to 9999A
cnx,ddy	Disconnect delay	√	√		number	0-300 minutes
cn <i>x</i> ,dtd	Temperature discon- nect delay	√	√		time	
cn <i>x</i> ,dtp	Temperature discon- nectthreshold	√	√		number	15 – 75 degrees C
cnx,dam	Disconnect automode	√	V		text	0=NONE 1=VOLTAGE 2=VOLTAGE/TIME 3=ADAPTIVE 4=TEMPERATURE 5=VOLTAGE/TEMP 6=VOLTAGE/TIME/TEMP 7=ADAPTIVE/TEMP
cnx,dtm	Disconnect remaining time	√			number	> 0 means going to disconnect
cnx,rth	Reconnect threshold	√	√		number	19.5-25V or 39-55V
cn <i>x</i> ,rdy	Reconnect delay	√	√		number	0-300 seconds

Table B-22 T1.317 Disconnect Contactor Control Related Commands (CN)

obj,attr	Description	sta	cha	ope	type	Range of Values
						0=NONE
						1=VOLTAGE
						2=VOLTAGE/TIME
cn <i>x</i> ,ram	Reconnect automode	,	,		text	3=ADAPTIVE
	Reconnect automode	V	√			4=TEMPERATURE
						5=VOLTAGE/TEMP
						6=VOLTAGE/TIME/TEMP
						7=ADAPTIVE/TEMP
cn <i>x</i> ,rtd	Temperature reconnect delay	√	√		time	
cnx,rtp	Temperature reconnectthreshold	√	√		number	15 – 75 degrees C
cnx 4,rtm	Reconnect remaining time	√			number	> 0 means going to reconnect

Table B-22 T1.317 Disconnect Contactor Control Related Commands (CN)

1 Super-user login only

Contactors are identified as follows:

CN1 = Battery Disconnect (LVBD1)

CN2 = Load 1 Disconnect (LVLD1)

CN3 = Load 2 Disconnect (LVLD2)

CN4 = Load 3 Disconnect (LVLD3)

obj,attr	Description	sta	cha	ope	type	Range of Values
sc1,ide	Identifier	\checkmark			Text	SC1
sc1,des	Description	√	√		Text	Slope Thermal Comp
scl,stt	State	√	√		number	0=disable 1=enable
scl,rve	Raise Voltage Enable	√	√		number	0=disable 1=enable
Sc1,fse	Fail safe enable	√	√		number	0=disable 1=enable
sc1,ltt	Lower Temperature Threshold	√	√		number	-5-20°C or 23-68°F
scl,ntt	Nominal Temperature Threshold	√	√		number	15-30°C or 59-86°F
scl,utt	Upper Temperature Threshold	√	√		number	30-55°C or 86-131°F
scl,spt	Step Temperature	\checkmark	√		number	45-85°C or 113-185°F
sc1,lsp	Low temperature slope	√	√		number	1-10mV/°C per cell
sc1,usp	Upper temperature slope	√	√		number	1-10mV/°C per cell

Table B-23 T1.317 Slope Thermal Compensation Related Commands (SC)

obj,attr	Description	sta	cha	ope	type	Range of Values
msnc,des	Description	√	√		text	30 char (Mid-String Voltage Module n Channel c)
msnc,stt	State	\checkmark		√	text	None, Present, Missing
msnc,val	Value	\checkmark			Number	Mid-String voltage
msnc,did	Duplicate Id	\checkmark			Number	0=no 1=yes

Table B-24 T1.317 Mid-String Voltage Related Commands (MS)

Where n is the Mid-String module number from 1 to 7, and c is the Mid-String channel number from 1 to 3

obj,attr	Description	sta	cha	ope	type	Range of Values
dcmxx,ide	Identifier	√			number	DCMC1 is the plant shuntDCM01- DCM08
dcmxx,des	Description	\checkmark	√		number	Contactor 1
dcmxx,sn	Serial Number	√			text	Serial number
dcmxx,brc	Board Code	√			text	Board code
dcmxx,stt	State	√			text	NONE MISSINGPRESENT
dcmxx,typ	Shunt Type	√	√		text	NONE LOAD BATTERY
dcmxx,val	Reading	√			number	ddd.d Amps
dcmxx,sha	Shunt amp rating	√	√		number	0-9999 Amps
dcmxx,kwh	Total kWh	√		√	number	dd.d kWh

Table B-25 T1.317 Distribution Current Monitor Related Commands (DCM)

The shunt type defaults are as follows:

DCMC1 = Battery

DCM01 = Battery

DCM02-DCM08 = Load

obj,attr	Description	sta	cha	ope	type	Range of Values
dcnxx,ide	Identifier	√			number	DCN01-DCN06
dcn <i>xx</i> ,de s	Description	√	√		number	Contactor 1
dcn <i>xx</i> ,sn	Serial Number	√			text	Serial number
dcnxx,br c	Board Code	√			text	Board code
dcnxx,stt	State	\checkmark		√1	text	NONE MISSING OPEN CLOSED
dcn <i>xx</i> ,typ	Contactor interface type	√	√		text	NONE, CN1, CN2, CN3, or CN4

Table B-26 T1.317 Distribution Contactor Interface Related Commands (DCN)

The contactor interface type defaults are as follows:

DCN01 = CN1

DCN02 = CN2

DCN03 = CN3

DCN04-DCN08 = CN4

Page 158

¹ Super-user login required

obj,attr	Description	sta	cha	ope	type	Range of Values
inmnn,ide	Identifier	√			number	m=module nn=input number Examples: IN001=input 1 on controller IN103=input 3 on module with ID 1
inmnn,des	Description	√			text	See table below
inmnn"sn	Serial Number	√			text	Serial number
inmnn"brc	Board Code	√			text	Board code
inmnn,typ	Input alarm type	V	V		text	"" – no alarm, for in006, this value allows the input to be used foreither group standby or PBT. Polarity is ignored. "FAN1" - drives FAN1 alarm "FAN2" - drives FAN2 alarm "FAJ1" - drives FAJ1 alarm "FAJ2" - drives FAJ2 alarm "OSA1" - drives OSA1 alarm "AMJ1" - drives AMJ1 alarm, (not valid for NE872 or other LVDcard inputs) "GNR1" - drives GNR1 alarm "GNF1" - drives GNF1 alarm "AUX1" - drives AUX2 alarm "AUX3" - drives AUX3 alarm "AUX4" - drives AUX4 alarm "AUX5" - drives AUX5 alarm "AUX5" - drives AUX5 alarm "AUX6" - drives AUX6 alarm "REMLVD" - Active signal opens battery contactors for built-in plant input, or for LVD inputs, it opens the contactor on the card where the signal is active.
inmnn,stt	Alarming State	√				O=inactive,1=active
inmnn,pol	Input alarming condition	√	√		text	CLOSED, OPEN

Table B-27 T1.317 Input Management Related Commands (IN)

Where: m is the distribution interface module ID from 1 to 4 $\,$

nn is the input number from 01 to the number of inputs supported by the distribution interface module

Object	Signal Name	Default Description
In001	FAJI	Fuse Alarm Major 24V
In002	FAJ2	Fuse Alarm Major 48V
In003	AUX_PMJ	Auxiliary Major Alarm
In004	OS_BATT	Open String
In005	EPO_IN	Emergency Power Off
In006	PBT_IN	Group Standby/PBT
In007	AUX1_IN	Air Conditioner Fail
In008	AUX2_IN	Door Open
In009	AUX3_IN	High External Ambient
In010	AUX4_IN	Low External Ambient

Built-in plant inputs

obj,attr	Description	sta	cha	ope	type	Range of Values
cm1,des	Description	\checkmark	√		text	30 char (Call-Out Manager)
cm1,ngi	NAG Interval	√	√		Number	15 to 60 minutes

Table B-28 T1.317 Call-Out Manager Related Commands (CM)

obj,attr	Description	sta	cha	ope	type	Range of Values
x,des	Description	√	√		text	(Alternate) Call-Out Number
x,typ	Туре	√	√		text	DATA, PAGER
x,phn	Phone Number	√	√		text	Digit () * # - , up to 25 characters
x,bdr	Connect Baudrate	√	√		Number	300, 1200, 2400, 4800, 9600, 14400
x,dbt	Data Bits	√	√		Number	7, 8
x,pry	Parity	√	√		Text	O,E,N
x,sbt	Stop Bits	√	√		Number	1, 2
x,dly	Pager ID Delay	√	√		Number	0-9 seconds
x,pgr	Pager ID (Pin #)	√	√		Text	Digit () * # - , up to 25 characters
x,msg	Pager Message	√	√		Text	up to 25 characters

Table B-29 T1.317 Call-Out Phone Number Related Commands (P)

Where x is p1, p2, p3, p4, a1

obj,attr	Description	sta	cha	ope	type	Range of Values
x,ide	Identifier	\checkmark			text	E1, E2, E3, E4
x,des	Description	\checkmark	√		text	Email Address
x,adr	Address	\checkmark	√		text	40 characters
x,typ	Туре	\checkmark	√		text	NORMAL, PAGER

Table B-30 T1.317 Call-Out Email Address Related Commands (E)

Where x is E1 – E4

obj,attr	Description	sta	cha	ope	type	Range of Values
po1,des	Description	√	√		text	Periodic Call-Out 1
pol,phn	Phone Number	√	√		text	Digit () * # - , up to 25 characters
po1,bdr	Connect Baudrate	√	√		Number	300, 1200, 2400, 4800, 9600, 14400
po1,dbt	Data Bits	√	√		Number	7, 8
pol,pry	Parity	√	√		Text	O,E,N
pol,sbt	Stop Bits	√	√		Number	1, 2
pol,int	Interval	√	√		Text	SundaySaturday, Daily, Monthly, Quaterly, Never
po1,tim	Time	√	\checkmark		Time	Hh:mm
po1, cl01-10	Command Line 1-10	√			Text	X Up to 40 characters each

Table B-31 T1.317 Periodic Call-Out Related Commands (PO)

obj,attr	Description	sta	cha	ope	type	Range of Values
lp1,des	Description	\checkmark	√		text	Local Port 1
lp1,stt	State	√			text	USER, SUPER-USER, ADMINISTRATOR, TL1, LOGOUT
lp1,bdr	Baud Rate	√	√		text	AUTO, 300, 1200, 2400, 4800, 9600, 19200
lp1,dbt	Data Bits	\checkmark	√		Number	7, 8
lp1,pry	Parity	\checkmark	\checkmark		text	O, E, N
lp1,sbt	Stop Bits	\checkmark	√		Number	1, 2
lp1,tmo	Time-Out	\checkmark	√		Number	0(disabled) – 45 minutes
lp1,hsh	Handshaking	\checkmark	√		text	NO, HW, SW
lp1,app	Application	√	√		Text	TERMINAL, EVENT LOG, TL1, POLARIUM MASTER, MODBUS MASTER, MODBUS SLAVE
lp1,wre	Write Enable	√	√		Number	0=disable 1=enable

Table B-32 T1.317 Local RS-232 Port Related Commands (LP)

obj,attr	Description	sta	cha	ope	type	Range of Values
mp1,des	Description	√	√		Text	Modem Port 1
mpl,stt	State	√			Text	USER, SUPER-USER, ADMINISTRATOR, TL1, LOGOUT
mp1,bdr	Modem baud rate	√	√		text	2400,4800,9600
mp1,dbt	Data Bits	√	√		Number	7, 8
mp1,pry	Parity	√	√		text	O, E, N
mp1,sbt	Stop Bits	√	√		Number	1, 2
mp1,tmo	Time-Out	√	√		Number	0(disabled) – 45 minutes
mp1,hsh	Handshaking	√	√		text	NO, SW
mpl,nrg	Number of Rings Before Answer	√	√		number	2-15
mp1,wre	Write Enable	√	√		Number	0=disable 1=enable (HW,SW)
mp1,ins	Modem Initialization String	√	√		text	Up to 40 characters "" assigns the default string

Table B-33 T1.317 Modem Related Commands (MP)

obj,attr	Description	sta	cha	Ope	type	Range of Values
cb1,des	Description	\checkmark	√		text	Call-Back Security 1
cb1,stt	State	√	√		number	0=off 1=on
cb1,ph1-5	Call-Back Phone Number	√	√		Text	Digit () * # - , space
cb1,br1-5	Connect Baudrate	√	√		number	300, 1200, 2400, 4800, 9600, 14400

Table B-34 T1.317 Call-Back Security Related Commands (CB)

obj,attr	Description	sta	cha	ope	type	Range of Values
net1,des	Description	√	√		text	30 char
net1,ead	Ethernet (MAC) Address	√			text	hh:hh:hh:hh:hh
net1,dhc p	DHCP	√	√	√1	number	0=static IP, 1=DHCP Client, 2=DHCP Server (OPE causes systemreboot)
net1,ip	Static IP address	√	√		IP address	xxx.xxx.xxx.xxx (not used if DHCP enabled)
net1,sub	Static Subnet Mask	√	√		IP address	xxx.xxx.xxx.xxx (not used if DHCP enabled)
net1,gtwy	Static Gateway (Router) IP	√	√		IP address	xxx.xxx.xxx.xxx (not used if DHCP enabled)
net1,host	Hostname	√	√		text	
net1,wip	Working IP address	√				xxx.xxx.xxx.xxx (shows DHCP assigned or static IP address)
net1,dom	Static Domain Name	\checkmark	√		text	(not used if DHCP enabled)
net1,dns	Static DNS IP	√	√		IP address	xxx.xxx.xxx.xxx (not used if DHCP enabled)
net1,ntp	NTP server	√	√		IP address	XXX.XXX.XXX
net1,wre	Write Enable	√	√			0=disabled, 1=enabled
net1,tmo	Session Timeout	√	√			Minutes
net1,msrv	Mailhost IP	√	√		IP address	xxx.xxx.xxx.xxx (0.0.0.0 will force a DNS lookup of "mailhost")
net1,sma	Send Mail As	√	√		text	E-mail address
net1,sid	SNMPv3 Engine ID	√			number	
net1,fpe	FTP enable	√	√		number	0=disable 1=enable
net1,hpe	HTTP enable	√	√		number	0=disable 1=enable
net1,hse	HTTPS enable	√	√		number	
net1,she	SSH enable	√	√		number	
net1,sne	SNMP enable	√	√		number	
net1,tle	Telnet enable	√	√		number	
net1,ip6	IPv6 Address	√	√		text	
net1,gtwy 6	IPv6 Gateway	√	√		text	
net1,wip6	Working IPv6 Address	√			number	
net1,ll6	Link local address	√			number	
net1,pl6	Prefix length	√	√		number	
net1,wgt wy6	IPv6 Router Address	√			number	

Table B-35 T1.317 Network Settings Related Commands (NET)

¹ Super-user login required

obj,attr	Description	sta	cha	ope	type	Range of Values
x,ide	Identifier	√			text	S1, S2, S3, S4
x,des	Description	\checkmark	\checkmark		text	SNMP Trap Destination
x,ip	IP Address	\checkmark	\checkmark		text	d.d.d.d
X,CS	Community string	√	\checkmark		text	cs1 – cs4
x,prt	UDP port	\checkmark	\checkmark		number	UDP port number
x,∨it	Send V1 SNMP traps	√	\checkmark			0=disable,1=enable
x,sot	Send the same trap for occur andretire	√	√		Number	0=disable,1=enable
x,snt	Trap destination test	√		√	Number	0=disable,1=enable

Table B-36 T1.317 SNMP Destination Related Commands (S)

Where x is S1 – S4 and obj is SND

obj,attr	Description	sta	cha	Ope	type	Range of Values
csn,des	Description	√	√		text	30 char
csn,str	Community string	√	√		text	20 characters
csn,lvl	Access level	$\sqrt{}$	$\sqrt{}$		text	user, super-user, administrator
csn,spt	SNMP protocol	\checkmark	√		text	SNMP_V1, SNMP_V2C, SNMP_V3
csn,apt	SNMPv3 authentication protocol	√	√		text	none, MD5, SHA
csn,aps	SNMPv3 authentication password	√	√		text	max 20 characters
csn,ppt	SNMPv3 privacy protocol	√	√		text	none, DES
csn,pps	SNMPv3 privacy password	√	√		text	max 20 characters
csn,ip	IP address to match	√	√		address	xxx.xxx.xxx (0.0.0.0 → no match required)
csn,ipm	IP address mask	√	√		address	xxx.xxx.xxx.xxx (255.255.255.4 compare entire IP address)
csn,wre	Write enable	√	√	-	number	0=disable 1=enable SETs

Table B-37 T1.317 SNMP Community Strings Commands (CS)

Where n is 1 - 4

obj,attr	Description	sta	cha	Ope	type	Range of Values
mod1,ide	Identifier	√			Text	MODI
mod1,des	Description	√	√		Text	30 char
mod1,id	Modbus Address	$\sqrt{}$	$\sqrt{}$		Number	1 to 255
mod1,typ	Туре	\checkmark	√		Text	"RTU", SLAVE TCP", "NONE"
mod1,tmo	timeout	\checkmark	√		Number	0 – 20000 milliseconds
mod1,ver	Modbus Register version	√			Text	
mod1,err	Communication errors	\checkmark		√	Number	Num Error Packets/Total Packets

Table B-38 T1.317 MODBus Slave Related Commands (MOD)

obj,attr	Description	sta	cha	Ope	type	Range of Values
obj,ide	Identifier	√			Text	D01,D02,D03,D04,D05
obj,des	Description	\checkmark	√		Text	30 char
obj,bdr	Baudrate	√	√		Text	2400, 4800, 9600, 19200,38400
obj,dbt	Data bits	\checkmark	√		Number	7, 8
obj,pry	Parity	√	√		Text	o, e, n
obj,sbt	Stop bits	>	√		Number	1, 2
obj,tmo	Round-trip timeout	√	√		Number	1 to 20000 milliseconds
obj,id	Modbus Address	√	√		Number	1 to 255
obj,err	Communication errors	\checkmark		√	Number	Num Error Packets/Total Packets

Table B-39 T1.317 Remote Polled Slave MODBus Devices Commands (MOD-D)

obj = d01 - d05

obj,attr	Description	sta	cha	Ope	type	Range of Values
obj,ide	Identifier	√			Text	D01,D02,D03,D04,D05
obj,des	Description	√	√		text	30 char
obj,dev	Device Object Number	√	√		Number	1-5
obj,reg	Remote MODbus Register	√	√		Number	0-65536 (0x10000)
obj,num	Number of Registers to poll	√	√		Number	1-4
obityp	Command Type	- /	- /		Number	0=(Read/Write) Coil, 1=(Read/Write) Discrete Input,
obj,typ	Command Type	√	V	√ Nur	Number	2=(Read/Write) Holding Register,3= (Read/Write) Input Register
obj,wre	Write Access	√	√		Number	O,1
obj,val	Value	√		√	Number	Value Read/to be written
obj,uni	Units	√	√		Text	Units
obj,stt	Status	√	√		Number	Bit field 0x01 Ready 0x02 Timeout 0x04 Received message
obj,ofs	Offset	√	√		Number	Offset Applied to value read
obj,scf	Scale factor	√	√		Number	Scale Factor Applied to value read
obj,dft	Display Format	√	√		Number	0=hex, 1=decimal, 2=float
obj,tft	Transfer Format via Modbus	√	√		Number	0=signed, 1=unsigned, 2=float
obj,int	Poll interval	√	√		Number	1-60 seconds
obj,err	Communication errors	√		√	Number	Num Error Packets/Total Packets

Table B-40 T1.317 Polled MODBus Registers Related Commands (MOD-R)

obj,attr	Description	sta	cha	ope	type	Range of Values
at1,des	Description	√	√		Text	Alarm Test 1
at1,stt	Alarm Test State	√		√1	Number	0=inactive 1=active
at1,stg	Alarm Test Stage	√			text	PCR,PMJ,PMN,R1,R2,R3,R4,R5,R6,R7
at1,lte	Alarm Test Enable	√	√1		Number	0=disable 1=enable (HW,SW)
at1,dur	Duration	√	√1		Number	5-300 seconds
at1,pcr	Test Power Critical	√	√1		Number	0=no 1=yes
at1,pmj	Test Power Major	√	√1		Number	0=no 1=yes
at1,pmn	Test Power Minor	√	√1		Number	0=no 1=yes
atl,rl	Test Relay 1	√	√1		Number	0=no 1=yes
at1,r2	Test Relay 2	√	√1		Number	0=no 1=yes
at1,r3	Test Relay 3	√	√1		Number	0=no 1=yes
at1,r4	Test Relay 4	√	√1		Number	0=no 1=yes
at1,r5	Test Relay 5	\checkmark	√1		Number	0=no 1=yes
at1,r6	Test Relay 6	√	√1		Number	0=no 1=yes
at1,r7	Test Relay 7	\checkmark	√1		Number	0=no 1=yes
at1,ets	Email Test	\checkmark		√	number	1=do test (sets and clears ATA1)
at1,ems	Email Results	√			text	
at1,irt	Individual Relay Test State	√		√	Number	""=Stop Test, PCR,PMJ,PMN,R1,R2,R3,R4,R5,R6,R7
at1,snt	SNMP Test	\checkmark		√	Number	1=do test
at1,bzi	Audio Test Duration	\checkmark	√1		Number	5-300 seconds
at1,bzt	Audio Test State	√		√	Number	""=Stop Test, Local=local buzzer

Table B-41 T1.317 Alarm Test Related Commands (AT)

obj = r001 - r200

obj,attr	Description	sta	cha	ope	type	Range of Values
aco1,des	Description	\checkmark	\checkmark		Text	Alarm Cut-off 1
acol,stt	Alarm Cut-off State	\checkmark		\checkmark	Number	0=inactive 1=active
acol,cst	Critical Alarm Cut-off State	√			Number	0=inactive 1=active
acol,cae	Critical Alarm Cut-off Enable	√	√		Number	0=disable 1=enable
acol,cto	Critical Alarm Cut-off Time-Out	√	√		Number	1 to 8 hours
acol,jst	Major Alarm Cut-off State	√			Number	0=inactive 1=active
acol,jae	Major Alarm Cut-off Enable	√	√		Number	0=disable 1=enable
acol,jto	Major Alarm Cut-off Time-Out	√	√		Number	1 to 8 hours
acol,nst	Minor Alarm Cut-off State	√			Number	0=inactive 1=active
acol,nae	Minor Alarm Cut-off Enable	√	√		Number	0=disable 1=enable
acol,nto	Minor Alarm Cut-off Time-Out	√	√		Number	1 to 72 hours
aco1,lbe	Local Buzzer Enable	√	√		Number	0=disable 1=enable

Table B-42 T1.317 Alarm Cut-off Related Commands (ACO)

obj,attr	Description	sta	cha	ope	type	Range of Values
unnnn,des	Description	√	√		Text	30 char
unnnn,fds	Front Panel Description	√	√		text	see below
unnnn,ast	Alarm State	\checkmark			Number	0=inactive 1=active
unnnn,sev	Severity	\checkmark	√		Text	CRIT, MAJ, MIN, WRN, RO
unnnn,prg	Program Line	√	√		Text	60 char
unnnn,dur	Minimum Duration	√	√		Number	> 0 seconds
unnnn,lat	Latched	√	√		Number	0=no 1=yes
unnnn,led	LED	√	√		text	BD,AC,DC,""
unnnn,acc	Contact Closure	√	√		text	R1,R2,R3,R4,R5,R6,R7,""
unnnn,dly	Notify Delay	√	√		Number	0-540 seconds
unnnn,noo	Notify On Occur	√	√		Number	0=no 1=yes
unnnn,nor	Notify On Retire	√	√		Number	0=no 1=yes
unnnn,na g	NAG On Occur	√	√		Number	0=no 1=yes
unnnn,dst	Notify Destination	√	√		text	"", P1, P2, P3, P4, E1, E2, E3, E4, S1, S2, S3, S4

Table B-43 T1.317 User Defined Events Related Commands (UDE)

Where nnnn = 1 thru 128

obj,attr	Description	sta	cha	ope	type	Range of Values
DRnn,des	Description	√	√		Text	30 char (Derived Chan nn)
DRnn,val	Value	√			Number	Number units
DRnn,prg	Program line	\checkmark	√		Text	60 char
DRnn,uni	Unit	√	√		Text	5 chars

Table B-44 T1.317 Derived Channels Related Commands (DR)

Where nn is from 01 thru 8

obj,attr	Description	sta	cha	ope	type	Range of Values
Ohiida	Obj,ide Identifier	- /				DCT1 for DC plant load
Obj,ide		V				CPT1 for DC converter load
dot1 dos	Description	√	√		Text	DC1 Trend Statistics
acti,des	dct1,des Description					CP1 Trend Statistics
dct1,src	Source	√	√		Text	DC1 ADC; CP1 ADC

Table B-45 T1.317 Trend Related Commands (DCT/CPT)

obj,attr	Description	sta	cha	ope	type	range
tlm1,des	Description	√	√		text	30 char (TL1 Manager)
tlm1,aue	Activate-User Enable	√	√		number	0=disable 1=enable
tlm1,cts	CTS Connect Detection	√	√		number	0=disable 1=enable
tlm1,dsr	DSR Connect Detection	√	√		number	0=disable 1=enable
Tlm1,prt	Port	√	√		number	2020
Tlm1,tmo	Timeout	√	√		number	0-60 minutes

Table B-46 T1.317 TL1 Manager Related commands (TL1-M)

obj,attr	Description	sta	cha	ope	type	Range of Values
tln,des	Description	\checkmark	√		text	30 char (TL1 Object n)
tln,cds	Condition Description	√	√		text	60 char
tln,aid	Aid	√	√		text	20 char
tln,cnd	Condition Type	√	√		text	20 char
tln,saf	Service Affecting	√	√		Number	0=no 1=yes
tln,rpt	Reporting	√	√		text	EQUIPMENT, ENVIRONMENT, PRESENCE

Table B-47 T1.317 TL1 Object Related Commands (TL1-O)

Where n is the TL object number from 001 thru 256 128

obj,attr	Description	sta	cha	ope	type	Range of Values
net2,des	Description	\checkmark	√		text	30 char
net2,ena	Enable	√	√		numbe r	0=disable 1=enable
net2,ip	Static IP address	√	√		IP address	xxx.xxx.xxx.xxx (not used if DHCP enabled)
net2,sub	Static Subnet Mask	√	√		IP address	xxx.xxx.xxx.xxx (not used if DHCP enabled)
net2,gtwy	Static Gateway (Router) IP	√	√		IP address	xxx.xxx.xxx.xxx (not used if DHCP enabled)
net2,host	Hostname	\checkmark	√		Text	
net2,dom	Static Domain Name	√	√		Text	(not used if DHCP enabled)
net2,msrv	Mailhost IP	√	√		IP address	xxx.xxx.xxx.xxx (0.0.0.0 will force a DNS lookup of "mailhost")

Table B-48 T1.317 Auxiliary Network Settings Related Commands (NET-2)

net2 is currently only used by an attached Gateway Card.

obj,attr	Description	sta	cha	Ope	type	Range of Values
rpt1,ide	Identifier	√			Text	RPT1
rpt1,des	Description	\checkmark	√		Text	Report
rpt1,ena	Enable	√	√		number	0=disable 1=enable
rpt1,dun	Display Units Enable	\checkmark	\checkmark		number	0=disable 1=enable
rpt1,int	Interval	√	√		number	1-60 in minutes, default 5
rpt1,dxxx1	Data line # for object, attribute	√	√		Text	Configurable t1317 object, attribute

Table B-49 T1.317 Bulk Data Report Related Commands (RPT)

¹Where the data lines are from d001 to d150

obj,attr	Description	sta	cha	Ope	type	Range of Values
dbnn,des	Description	√	√		text	30 char
dbnn,sn	Serial number	√			text	18 characters
dbnn,stt	State	√			text	Missing, Present
dbnn,sha	Shunt Capacity	√	√		Number	0 – 4000 Amps
dbnn,npl	Number of Panels	√	√		Number	1-8
dbnn,pmt	Measurement Type	√	√		text	I, IV, V (Current, Current and Voltage, Voltage)
dbnn,ids	Identification Style	√	√		text	AN (A1,B1 A4,B4), A (AH), N (18)
dbnn,bze	Buzzer Enable	√	√		Number	0=disable 1=enale
dbnn,ole	Overload Latch Enable	√	√		Number	0=disable 1=enable
dbnn,ori	Panel Orientation	√	√		Text	TL (Top Left), BL (BottomLeft), TR (Top Right), BR (Bottom Right)
dbnn,cmb	Combine Panels	√	√		Number	0=disable 1=enable
dbnn,smw	Shunt Mis-wired	√			Number	0=no shunt mis-wired,
dbnn,cca	Circuit Assignment	√			Number	0=no circuit assignment,
dbnn,vid	BDFB/BDCBB ID conflict	√			Number	0=no id conflict,1=id conflict
dbnn,ovl	Clear Latched Overload	√		√	Number	0=do not clear,1=clear latched alarm

Table B-50 T1.317 Distribution Bay Related Commands (DB)

Where nn is distribution bay 01 – 16

obj,attr	Description	sta	cha	Ope	type	Range of Values
dpbbp,des	Description	\checkmark	√		text	30 char
dpbbp,adc	Current	√			text	Measured current
dpbbp,vdc	Voltage	$\sqrt{}$			text	Measured voltage
dpbbp,stt	State	√			Number	Missing, Present
dpbbp,pid	Panel ID	√			Number	1-8
dpbbp,ena	Enable	√	√		Number	0=disable 1=enable
dpbbp,old	Overload Delay	√	√		Number	0 – 300 seconds
dpbbp,olt	Overload Threshold	√	√		Number	0 – 4000 Amps
dpbbp,olr	Redundant Overload	√	√		Number	0=disable 1=enable
dpbbp,plt	Power Loss Threshold	√	√		Number	40 – 60 Volts
dpbbp,cct	Input Circuit	√	√		Number	1-8
dpbbp,vlv	Power Loss	√			Number	0=power ok,1=power loss
dpbbp,ovl	Overload	√			Number	0=no overload,1=overload
dpbbp,faja	Distribution fuse A	√			Number	0=no fuse fail,1=fuse fail
dpbbp,fajb	Distribution fuse B	√			Number	0=no fuse fail,1=fuse fail

Table B-51 T1.317 Distribution Panel Related Commands (DP)

Where bb is distribution bay 01 – 16, p is panel 1 - 8

obj,attr	Description	sta	cha	Ope	type	Range of Values
peg <i>nnn</i> ,des	Description	√	√		text	30 char
peg <i>nnn</i> ,pwr	Power	√			Number	Power in Watts
peg <i>nnn</i> ,olcap	Online Capacity	$\sqrt{}$			Number	In Watts
peg <i>nnn</i> ,ops	Capacity	\checkmark			Number	In Watts
peg <i>nnn</i> ,ton	Turn on Circuits in Group	√		√	Number	0 = no turn on 1 = turn on
peg <i>nnn</i> ,toff	Turn off Circuits in Group	√		√	Number	0 = no turn off 1 = turn off

Table B-52 T1.317 Power Express Group Related Commands (PEG)

Where nnn is 1-512

obj,attr	Description	sta	cha	Ope	type	Range of Values
pesnn,des	Description	\checkmark	√		text	30 char
pesnn,stt	State	√			Number	Missing, Present
pesnn,sn	Serial number	\checkmark			text	YYLLdddddddd
pesnn,cc	Ordering Code	\checkmark			text	11 characters long
pesnn,ser	Series	\checkmark			text	
pesnn,clei	Clei Code	\checkmark			text	
pesnn,typ	Shelf type	\checkmark			text	
pesnn,ver	Version	\checkmark			text	
pesnn,osp	Output setpoint	\checkmark	√		Number	57 – 59 Volts
pesnn,iv1	Input voltage 1	\checkmark			Number	Measured voltage 1
pesnn,iv2	Input voltage 2	√			Number	Measured voltage 2
pesnn,ram	Relay alarming	√			Number	0 = no relay alarming 1= relayalarming
pesnn,rev1	Reverse Polarity 1	√			Number	0 = not reversed 1 = reversed
pesnn,rev2	Reverse Polarity 2	√			Number	0 = not reversed 1 = reversed
pesnn,ivorl	Input voltage 1 out of range	√			Number	0 = normal 1 = out of range
pesnn,ivor2	Input voltage 2 out of range	√			Number	0 = normal 1 = out of range
pesnn,das2	Is Power Express 2	√			Number	0= Power Express 1 = Power Express 2
pesnn,peid	ID Conflict	√			Number	0= No ID conflict 1 = ID conflict

Table B-53 T1.317 Power Express Shelf Related Commands (PES)

Where nn is shelf 01 – 16

obj,attr	Description	sta	cha	Ope	type	Range of Values
pemnnd,des	Description	\checkmark	\checkmark		text	30 char
pemnnd,stt	State	\checkmark			Number	Missing, Present
pemnnd,vdc	Input voltage	\checkmark			Number	Measured voltage
pemnnd,adc	Input current	\checkmark			Number	Measured current
pemnnd,tmp	Input temperature	\checkmark			Number	Measured temperature in F or C
pemnnd,lth	Load Threshold	\checkmark	\checkmark		Number	0.025 – 0.500 A
pemnnd,sn	Serial number	\checkmark			text	YYLLdddddddd
pemnnd,cc	Ordering code	\checkmark			text	11 characters long
pemnnd,ser	Series	\checkmark			text	
pemnnd,clei	Clei Code	\checkmark			text	
pemnnd,typ	Module type	\checkmark			text	
pemnnd,ver	Version	\checkmark			text	
pemnnd,dif	Internal Circuit Fail	\checkmark			Number	0= no fail 1 = fail
pemnnd,ops	Over power shutdown	√			Number	0 = no shutdown 1= shutdown
pemnnd,ocs	Over current shutdown	√			Number	0 = no shutdown 1 = shutdown

Table B-54 T1.317 Power Express Module Related Commands (PEM)

obj,attr	Description	sta	cha	Ope	type	Range of Values
pemnnd,scs	Short circuit shutdown	√			Number	0 = no shutdown 1 = shutdown
pemnnd,ior	Input out of range shutdown	>			Number	0 = no shutdown 1 = shutdown
pemnnd,ots	Over temperature shutdown	>			Number	0 = no shutdown 1 = shutdown
pemnnd,ldr	Load dropped	\checkmark			Number	0 = normal 1 = load dropped
pemnnd,dfan	Fan fail	√			Number	0 = no fail 1 = fail
pemnnd,msn	Module Scan	√		√	Number	0 = No request 1 = Start Scan

Table B-54 T1.317 Power Express Module Related Commands (PEM) (continued)

Where nn is shelf 01 – 16, d is module 1-4

obj,attr	Description	sta	cha	Ope	type	Range of Values
pecnndt,des	Description	√	√		text	30 char
pecnndt,stt	State	√		√	Number	Missing, On, Off
pecnndt,vdc	Output voltage	√			Number	Measured voltage in Volts
pecnndt,adc	Output current	√			Number	Measured current in Amps
pecnndt,pwr	Power	√			Number	Power in Watts
pecnndt,dif	Internal Circuit Fail	√			Number	O= no fail 1 = fail
pecnndt,ops	Over power shutdown	√			Number	0 = no shutdown 1= shutdown
pecnndt,ocs	Over current shutdown	√			Number	0 = no shutdown 1 = shutdown
pecnndt,scs	Short circuit shutdown	√			Number	0 = no shutdown 1 = shutdown
pecnndt,ior	Input out of range shutdown	√			Number	0 = no shutdown 1 = shutdown
pecnndt,ots	Over temperature shutdown	√			Number	0 = no shutdown 1 = shutdown
pecnndt,ldr	Load dropped	\checkmark			Number	0 = normal 1 = load dropped
pecnndt,dfan	Fan fail	√			Number	0 = no fail 1 = fail

Table B-55 T1.317 Power Express Circuit Related Commands (PEC)

Where nn is shelf 01 – 16, d is module 1-4, and t is circuit 1-

obj,attr	Description	sta	cha	Ope	type	Range of Values
rhmnd,des	Description	√	√		text	30 char
rhmnd,stt	State	√			Text	Missing, Normal, Alarmed
rhmnd,sn	Serial number	√			text	YYLLdddddddd
rhmnd,cc	Ordering Code	√			text	11 characters long
rhmnd,ser	Series	√			text	
rhmnd,clei	Clei Code	√			text	
rhmnd,typ	Module type	√			text	
rhmnd,ver	Version	√			text	
rhmnd,sfan	Single Fan Failure	√			number	0 = no fail 1 = fail
rhmnd,mfan	Multiple Fan Failure	$\sqrt{}$			number	0 = no fail 1= fail

Table B-56 T1.317 PowerShift Module Related Commands (RHM)

obj,attr	Description	sta	cha	Ope	type	Range of Values
rhmnd,tmf	Over temperature	\checkmark			number	0 = no shutdown 1 = shutdown
rhmnd,fua	Fuse alarm				number	0 = no shutdown 1 = shutdown
rhmnd,intl	Interlock open	\checkmark			number	0 = no shutdown 1 = shutdown
rhmnd,lmis	Module Mismatch	l 3/ l l l num	number	0= no alarm 1= alarm		
minina,iinis	alarmstatus				Humber	only used for LDC2
rhmnd,rrid	ID Conflict	\checkmark			number	0 = no ID conflict 1 = ID conflict

Table B-56 T1.317 PowerShift Module Related Commands (RHM) (continued)

Where n is shelf 1-2, d is module D, B, C or A for version 1 and nd = 01 to 12 for version 2

obj,attr	Description	sta	cha	Ope	type	Range of Values
Rhcn,des	Description	V	√		text	30 char
rhcn,stt	State	√ √	V		Text	Missing, Normal, Alarmed
rhcn,are	Actual resistance value inohms	√			number	Resistance in Ohms
rhcn,cre	Calculated resistance value inohms	√			number	Resistance in Ohms
rhcn,mre	Manual resistance value inohms	√			number	Resistance in Ohms
rhcn,crm	Configured resistance mode	√	√		text	Auto or Manual
rhcn,vsp	Target "upper" set point inVolts	√	√		number	In Volts
rhcn,vcl	Clamp set point in Volts	√	√		number	In Volts
rhcn,pri	Primary Boost id	√			text	
rhcn,sec	Secondary Boost id	\checkmark			text	
rhcn,src	ID of sourced Boost				text	
rhcn,ovprm	OVP number and port number	√	√		number	Format XYY – where X is OVP 0-4, and YY is port 1-12 of OVP
rhcn,sct	Sector	$\sqrt{}$	$\sqrt{}$		text	
rhcn,clr	Color	$\sqrt{}$	$\sqrt{}$		text	
rhcn,tec	Technology	$\sqrt{}$	\checkmark		text	
rhcn,frq	Frequencies	$\sqrt{}$	\checkmark		text	
rhcn,cbn	DC CB Number	$\sqrt{}$	$\sqrt{}$		text	
rhcn,ena	Enable channel	$\sqrt{}$	$\sqrt{}$		number	0 or 1
rhcn,rlse	Redundancy Loss Enable	√	√		Number	0 = enable 1 = disable (automatically set each connection to controller)
rhcn,rls	Redundancy Loss Status	√			Number	0 = redundancy loss not active 1 =Redundancy loss active
rhcn,luv	Upper Resistance AlarmStatus	√			number	0= no alarm 1= alarm
rhcn,Ires	High Resistance Alarm Status	√			number	0= no alarm 1= alarm
rhcn,lvnl	Voltage not linked alarmstatus	√			number	0= no alarm 1= alarm
rhcn,lpri	Primary Fault alarm status	√			number	0= no alarm 1= alarm
rhcn,ldcp	Disabled Circuit but Poweredstatus	√			number	0= no alarm 1= alarm
rhcn,puvl	Upper Voltage Low	$\sqrt{}$			number	0= no alarm 1= alarm

Table B-57 T1.317 Power Shift Circuit Related Commands (RHC)

Where n is circuit number from 01 - 12

obj,attr	Description	sta	cha	Ope	type	Range of Values
rhbndt,des	Description	V	√		text	30 char
rhbndt,stt	State	√		√	Text	Missing, On, Off, Pending On, Pending Off
rhbndt,vout	Output voltage	√			Number	Measured voltage in Volts
rhbndt,iout	Output current	\checkmark			Number	Measured current in Amps
rhbndt,vin	Input voltage	√			Number	Measured voltage in Volts
rhbndt,are	Auto resistance	√			Number	Auto resistance value in Ohms
rhbndt,mre	Manual resistance	√	√		Number	Manual resistance value in Ohms – only used LDC1
rhbndt,crm	Configured resistance mode	√	√		Text	Configured resistance mode: Auto or Manual – only used for LDC1
rhbndt,vsp	Configured Output voltagesetpoint	√	√		Number	Configured Output voltage setpoint in Volts – only used for LDC1
rhbndt,vcl	Configured Output voltagelimit setpoint	√	√		Number	Configured Output voltage limit setpoint in Volts - only used forLDC1
rhbndt,vera	Algorithm Software Version	√			Text	x.y
rhbndt,verb	Boost Software Version	√			Text	x.y
rhbndt,arf	Auto Resistance Fail	√			Number	0= no fail 1 = fail – used for LDC1
rhbndt,tmf	Over temperature shutdown	√			Number	0 = no shutdown 1= shutdown
rhbndt,ifa	Input Fail	\checkmark			Number	0 = no shutdown 1 = shutdown
rhbndt,ovl	Output Current Overload	√			Number	0 = no shutdown 1 = shutdown
rhbndt,rlse	Redundnacy Loss Enable	√	√		Number	0 = enable 1 = disable
rhbndt,rls	Redundancy Loss Status	√			Number	0 = redundancy loss not active 1 = Redundancy loss active - used onlyfor LDC2
rhbndt,vor	Output voltage out of range	√			Number	0 = no shutdown 1 = shutdown
rhbndt,pgd	Power Good	√			Number	0 = not active source of power 1 = active source of power - used only for LDC2
rhbndt,clf	Clear Faults	√		√	Number	0 = do not clear faults 1 = clear faults

Table B-58 T1.317 PowerShift Boost Related Commands (RHB)

obj,attr	Description	sta	cha	Ope	type	Range of Values
rht1,des	Description	√	\checkmark		text	30 char
rht1,stt	State	√			text	Missing, Present
rht1,arch	Architecture	√	√		number	1=LDC1, 2= LDC2
rht1,sn	Serial number	√			text	YYLLdddddddd
rht1,cc	Ordering Code	√			text	11 characters long
rht1,ser	Series	\checkmark			text	
rht1,clei	Clei Code	√			text	
rht1,typ	Board type	√			text	
rht1,vera	Version	\checkmark			text	

Table B-59 T1.317 PowerShift Translator Related Commands (RHT)

obj,attr	Description	sta	cha	Ope	type	Range of Values
rhop,des	Description	√	√		text	30 char
rhop,v01	Voltage from port 1	√			number	Number in volts
rhop,v02	Voltage from port 2	√			number	Number in volts
rhop,v03	Voltage from port 3	$\sqrt{}$			number	Number in volts
rhop,v04	Voltage from port 4	√			number	Number in volts
rhop,v05	Voltage from port 5	√			number	Number in volts
rhop,v06	Voltage from port 6	√			number	Number in volts
rhop,v07	Voltage from port 7	√			number	Number in volts
rhop,v08	Voltage from port 8	√			number	Number in volts
rhop,v09	Voltage from port 9	√			number	Number in volts
rhop,v10	Voltage from port 10	√			number	Number in volts
rhop,v11	Voltage from port 11	√			number	Number in volts
rhop,v12	Voltage from port 12	√			number	Number in volts
rhop,sa	System alarms	√			number	Bit 4 = H2O Alarm Bit 5 = Intrusion Alarm Bit 6 = Power Alarm (Reverse V orShorted Cir.) Bit 7 = Tower to Base communication error
rhop,a01	Alarms from port 1	√			number	Bit 12 = Reverse Voltage Bit 13 = -48Vd.c. breaker open or only RTN connected Bit 14 = Short circuit
rhop,a02	Alarms from port 2	√			number	Bit 12 = Reverse Voltage Bit 13 = -48Vd.c. breaker open or only RTN connected Bit 14 = Short circuit

Table B-60 T1.317 PowerShift Packet Related Commands (RHO)

obj,attr	Description	sta	cha	Ope	type	Range of Values
						Bit 12 = Reverse Voltage
rhop,a04	Alarms from port 4	√			number	Bit 13 = -48Vd.c. breaker open or only RTN connected
						Bit 14 = Short circuit
						Bit 12 = Reverse Voltage
rhop,a05	Alarms from port 5	√			number	Bit 13 = -48Vd.c. breaker open or only RTN connected
		Bit 14 = Short circuit				
						Bit 12 = Reverse Voltage
rhop,a06	Alarms from port 6	√			number	Bit 13 = -48Vd.c. breaker open or only RTN connected
						Bit 14 = Short circuit
						Bit 12 = Reverse Voltage
rhop,a07	Alarms from port 7	√			number	Bit 13 = -48Vd.c. breaker open or only RTN connected
						Bit 14 = Short circuit
						Bit 12 = Reverse Voltage
rhop,a08	Alarms from port 8	√			number	Bit 13 = -48Vd.c. breaker open or only RTN connected
						Bit 14 = Short circuit
						Bit 12 = Reverse Voltage
rhop,a09	Alarms from port 9	√			number	Bit 13 = -48Vd.c. breaker open or only RTN connected
						Bit 14 = Short circuit
						Bit 12 = Reverse Voltage
rhop,a10	Alarms from port 10	√			number	Bit 13 = -48Vd.c. breaker open or only RTN connected
						Bit 14 = Short circuit
						Bit 12 = Reverse Voltage
rhop,all	Alarms from port 11	√			number	Bit 13 = -48Vd.c. breaker open or only RTN connected
						Bit 14 = Short circuit
						Bit 12 = Reverse Voltage
rhop,a12	Alarms from port 12	√			number	Bit 13 = -48Vd.c. breaker open or only RTN connected
						Bit 14 = Short circuit
rhop,tpt	Packet Timeout	√			number	

Table B-60 T1.317 PowerShift Packet Related Commands (RHO) (continued)

Where p is packet ID from 0 to 4

obj,attr	Description	sta	cha	Ope	type	Range of Values
picnn,ide	Identifier	√			Text	PICnn
picnn,des	Description	√	√		text	30 char
picnn,stt	State	√			text	
picnn,sn	Serial number	√			text	
picnn,ncc	No Cable Connected	√	√		Number	0=Cable returning status connected,1= no cable connected returning status
picnn,trp	Shunt Trip Disconnect	√	√		Number	0=normal disconnect
picnn,vera	Application software version	√			text	
picnn,pid	Duplicate ID	√			Number	0=no 1=yes
picnn,pcf	Communication fail	√			Number	0=no 1=yes

Table B-61 T1.317 Panel Interface Card Related Commands (PIC)

obj,attr	Description	sta	cha	Ope	type	Range of Values
pcmccnn,ide	Identifier	\checkmark			Text	PCMccnn
pcmccnn,des	Description	√	√		text	30 char
pcmccnn,val	Current	$\sqrt{}$			Number	
pcmccnn,sha	Shunt current rating	$\sqrt{}$	\checkmark		Number	
pcmccnn,shv	Shunt mV	\checkmark	√		Number	
pcmccnn,sht	Shunt type	√	√		Text	"NONE", "BATTERY", "LOAD"

Table B-62 T1.317 Panel Current Monitor Related Commands (PCM)

Where nn is PIC 01 – 32 and cc is channel 01 – 02

obj,attr	Description	sta	cha	Ope	type	Range of Values
pvm <i>ccnn</i> ,ide	Identifier	√			Text	PVMccnn
pvm <i>ccnn</i> ,des	Description	√	√		text	30 char
pvm <i>ccnn</i> ,val	Voltage	√			Number	

Table B-63 T1.317 Panel Voltage Monitor Related Commands (PVM)

Where nn is PIC 01 – 32 and cc is channel 01 – 02

obj,attr	Description	sta	cha	Ope	type	Range of Values
ptm01nn,ide	Identifier	\checkmark			Text	PTM0lnn
ptm01nn,des	Description	\checkmark	\checkmark		text	30 char
ptm01nn,bamt	Board Ambient Temperature	√			Number	
ptm01nn,nat	Number of Ambient Temperature Probes	√			Number	
ptm01nn,hamt	Highest Ambient Temperature (Probe)	\checkmark			Number	
ptm01nn,lamt	Lowest Ambient Temperature (Probe)	√			Number	
ptm01nn,ntm	Number of Battery Probes	√			Number	
ptm01nn,hbt	Highest Battery Temperature	√			Number	
ptm01nn,lbt	Lowest Battery Temperature	√			Number	
ptm01nn,nbut	Number of Bus Temperature Probes	√			Number	
ptm01nn,hbut	Highest Bus Temperature	\checkmark			Number	
ptm01nn,lbut	Lowest Bus Temperature	√			Number	

Table B-64 T1.317 Panel Temperature Monitor Related Commands (PTM)

Where nn is PIC 01 – 32

obj,attr	Description	sta	cha	Ope	type	Range of Values
bmicxxyy,des	Description	\checkmark	√		text	BMIC sr
bmicxxyy,stt	Individual bmic state	√			text	NORMAL, MISSING, ALARMED
bmicxxyy,typ	Battery Type	√			text	30 char
bmicxxyy,cap	Ampere Hour Capacity	$\sqrt{}$			number	number Ah
bmicxxyy,kwh	Kilo Watt Hour Capacity	√			number	number kWh
bmicxxyy,soh	State of Health	√			number	0-100%
bmicxxyy,sn	Serial number	√			text	Up to 18 characters
bmicxxyy,brc	Board Code	√			text	
bmicxxyy,cc	Ordering Code	√			text	11 characters long
bmicxxyy,clei	Clei Code	√			text	
bmicxxyy,ser	Series	√			text	
bmicxxyy,verp	Software version	√			text	
bmicxxyy,bdt	Build date	√			text	In configured date format
bmicxxyy,sdt	Installed date	√			text	In configured date format
bmicxxyy,d01	Date on Monobloc 1	√			text	In configured date format
bmicxxyy,d02	Date on Monobloc 2	√			text	In configured date format
bmicxxyy,d03	Date on Monobloc 3	√			text	In configured date format

Table B-65 T1.317 Battery Module Interface Card Related Commands (BMIC)

obj,attr	Description	sta	cha	Ope	type	Range of Values
bmicxxyy,d04	Date on Monobloc 4	\checkmark			text	In configured date format
bmicxxyy,d05	Date on Monobloc 5	√			text	In configured date format
bmicxxyy,d06	Date on Monobloc 6	√			text	In configured date format
bmicxxyy,d07	Date on Monobloc 7	√			text	In configured date format
bmicxxyy,d08	Date on Monobloc 8	√			text	In configured date format
bmicxxyy,lds	Last Recharge Date	√			text	In configured date format
bmicxxyy,ncl	Discharge/Charge Cycles	\checkmark			number	Number
bmicxxyy,man	Manufacturer	√			text	
bmicxxyy,ev	End Voltage	√			number	Number V
bmicxxyy,ofs	Optimum Float Voltage	√			number	Number V
bmicxxyy,moc	Maximum Output Current	√			number	Number A
bmicxxyy,mnt	Minimum Operating Temperature	√			number	Number C/F
bmicxxyy,mxt	Maximum Operating Temperature	\checkmark			number	Number C/F
bmicxxyy,tmp	Nominal Temperature	\checkmark			number	Number C/F
bmicxxyy,tec	Battery Technology	\checkmark			text	Flooded, Valve-Reg
bmicxxyy,vbat	Battery Voltage	\checkmark			number	number V
bmicxxyy,vbus	Bus Voltage	\checkmark			number	number V
bmicxxyy,v01	String Voltage 1	\checkmark			number	number V
bmicxxyy,v02	String Voltage 2	\checkmark			number	number V
bmicxxyy,v03	String Voltage 3	\checkmark			number	number V
bmicxxyy,v04	String Voltage 4	\checkmark			number	number V
bmicxxyy,v05	String Voltage 5	\checkmark			number	number V
bmicxxyy,v06	String Voltage 6	>			number	number V
bmicxxyy,v07	String Voltage 7	>			number	number V
bmicxxyy,v08	String Voltage 8	\checkmark			number	number V
bmicxxyy,adc	Current	>			number	number A
bmicxxyy,hbt	Highest battery temperature	√			number	dd °C or °F
bmicxxyy,lbt	Lowest battery temperature	√			number	dd °C or °F
bmicxxyy,t01	Battery temperature 1	\checkmark			number	dd °C or °F
bmicxxyy,t02	Battery temperature 2	$\sqrt{}$			number	dd °C or °F
bmicxxyy,t03	Battery temperature 3	$\sqrt{}$			number	dd °C or °F
bmicxxyy,t04	Battery temperature 4	\checkmark			number	dd °C or °F
bmicxxyy,t05	Battery temperature 5	\checkmark			number	dd °C or °F
bmicxxyy,t06	Battery temperature 6	√			number	dd °C or °F

Table B-65 T1.317 Battery Module Interface Card Related Commands (BMIC) (continued)

obj,attr	Description	sta	cha	Ope	type	Range of Values
bmicxxyy,t07	Battery temperature 7	√			number	dd °C or °F
bmicxxyy,t08	Battery temperature 8	√			number	dd °C or °F
bmicxxyy,tin	Ambient inlet temperature	√			number	dd °C or °F
bmicxxyy,tot	Ambient outlet temperature	√			number	dd °C or °F
bmicxxyy,rtm	Reserve Time	√			number	Time in seconds
bmicxxyy,res	Reserve Time Error	√			text	
bmicxxyy,poc	Battery charge percentage	√			text	0 to 100 % (with percent character)
bmicxxyy,all	Alarm LED indicator	√			text	
bmicxxyy,dcl	DC Led indicator	√			text	
bmicxxyy,epo	Emergency Power Off	√			number	0 or 1
bmicxxyy,scd	Shorted Cell	√			number	0 or 1
bmicxxyy,bmf	Fail Status	√			number	0 or 1
bmicxxyy,bmot	Over Temperature Status	√			number	0 or 1
bmicxxyy,bmil	Interlock Status	√			number	0 or 1
bmicxxyy,bmoc	Over Current Status	√			number	0 or 1
bmicxxyy,bmlf	Life Exceeded Status	√			number	0 or 1
bmicxxyy,bmdl	Discharge Cycle Limit Status	√			number	0 or 1
bmicxxyy,bmde	High Discharge Cycle Limit Status	√			number	0 or 1
bmicxxyy,bmlv	Low internal string voltageStatus	√			number	0 or 1
bmicxxyy,cno	Contactor Open Status	√			number	0 or 1
bmicxxyy,cnf	Contactor Failed Status	√			number	0 or 1
bmicxxyy,bfan	Fan Status	√			number	0 or 1
bmicxxyy,bhio	Hi Output Exceeded Status	√			number	0 or 1
bmicxxyy,bmxt	Max Temp Exceeded Status	√			number	0 or 1
bmicxxyy,bmnt	Min Temp Exceeded Status	√			number	0 or 1
bmicxxyy,bmdu	Duplicate ID status	√			number	0 or 1
bmicxxyy,vmod	Modbus Version	√			number	
bmicxxyy,vmin	Minimum Cell Voltage	√			number	Volts
bmicxxyy,vmax	Maximum Cell Voltage	√			number	Volts
bmicxxyy,lif	Run Time	√			time	Run Time in seconds
bmicxxyy,atft	Anti-theft status	√			number	0 or 1
bmicxxyy,bmcb	Circuit Breaker status	√			number	0 or 1
bmicxxyy,bmuv	Under Voltage status	√			number	0 or 1

Table B-65 T1.317 Battery Module Interface Card Related Commands (BMIC) (continued)

obj,attr	Description	sta	cha	Ope	type	Range of Values
bmicxxyy,bmov	Over Voltage status	\checkmark			number	0 or 1
bmicxxyy,bcub	Current Blocked status	\checkmark			number	0 or 1
bmicxxyy,bmsc	Short Circuit status	\checkmark			number	0 or 1
bmicxxyy,bmut	Under Temperature status	√			number	0 or 1
bmicxxyy,mod	Modbus Id	\checkmark			number	

Table B-65 T1.317 Battery Module Interface Card Related Commands (BMIC) (continued)

Where xx is bmic ID from 01 to 44 and yy is the station number from 01 to 04 $\,$

Additional T1.317 Commands And Samples

ala	Report Active Alarms
Syntax:	ala
Description	

This command reports all the active alarm conditions in the plant. One alarm message is listedper line in the report. The table below lists the default alarm messages. Note that if user changes the severity of the alarm, the corresponding change will show up in the alarm message. However, alarm conditions with the RO severity will not be displayed, the rec command, discussed later, must be used.

Alarm Message

MAJ, Multiple Rectifier Fail

MAJ, Multiple AC Fail

MAJ, Battery On Discharge

MAJ, High Voltage

MAJ, Sense Fuse

MAJ, Fuse Major

MAJ, Auxiliary Major

MAJ, Contactor 1 Open

MAJ, Contactor 1 Fail

MAJ, Major Communication Fail

MAJ, High Battery Current Shutdown

MAJ, Shorted Cell Detected

MAJ, Imminent Low V Shutdown

MAJ, Open String

MIN, Rectifier Fail

MIN, AC Fail

MIN, Thermal Probe Fail

MIN, Battery High Temp

MIN, Rect Redundancy Loss

MIN, High Battery Current

MIN. Minor Communication Fail

MIN, Circuit Pack Failure

MIN, Mid-cell V Monitor Fail

If no alarms are active "NO ACTIVE ALARMS" is reported.

bye	Log-off
Syntax:	bye
Description	
This command is used to tarminate the socian	

This command is used to terminate the session.	

cha	Change Value
Syntax:	cha obj,attr=value
	where: obj,attr is an object-attribute pair. For example, ps1,sid.
	·

Description

This command is used to change system configuration parameters. Examples are listed belowto illustrate how this command works.

cha ps1,sid="My Plant"Change the site id to My Plant

cha p1,phn="123456789"Change the primary phone number to 123456789

You must be logged in as a super-user to use this command.

cle Clear All Latched Events

Syntax: cle

Description

This command is used to clear latched events. These events include communication failures,missing rectifiers, missing thermal probes, missing voltage monitoring module, distribution fuses, and loss of redundancy alarm.

You must be logged in as a super-user to use this command.

his Report Alarm History

Syntax: his

Description

Syntaxhis

where: obj,attr is an object-attribute pair as defined in the following:sum dc1,adc- report plant load

current statistics

sum br1,hbt- report highest battery temperature statistics

his Report Boost History

Syntax: his bs1,stt

Description

This command reports the boost history in the following format:

sum bs1,stt

30-MAY-03,15:11:12,RESUMED,COMPLETED,78

30-MAY-03,12:03:34,AUTO,DISCHARGE,14

**

This report gives the start date, start time, start reason, stop reason, and boost duration inminutes.

The start reasons are:

MANUALBoost initiated by user

AUTOBoost started automatically after a battery discharge RESUMEDBoost resumed after being

suspended by a discharge

The stop reasons are:

COMPLETEDBoost completed normally

TIMEOUTBoost timed out before completing

DISCHARGEBoost suspended because of a battery discharge

CANCELEDBoost canceled by user

ALARMBoost cancelled by an alarm condition

DISABLEDAuto boost cancelled by being disabled

his Report BD History

Syntax: dc1,bod

Description

This command reports the battery discharge history in the following format:

his dc1,bod

30-MAY-03,15:11:12,MANUAL,COMPLETED,118.3,23,

01-APR-03,03:11:12,BD,COMPLETED,118.3,26,130

12-FEB-03,12:00:02,PERIODIC,COMPLETED,120.9,27,135

• **

This report gives the start date, start time, start reason, current at start of discharge, durationin minutes, and, if calculated, a reserve time prediction. The start reasons are:

MANUALDischarge test initiated by user

PERIODICPeriodic discharge test

BDNatural battery discharge

The stop reasons are:

COMPLETED Discharge completed normally

TIMEOUTAuto discharge test timed out

DISABLEDAuto discharge test disabled

ENDVDischarge test hit end voltage

CANCELEDDischarge test canceled by user

lis	List Rectifiers
Syntax:	lis rec
Descript	ion
	mand is used to list all the rectifiers in the system. The command will list all presentand missing rectifiers.
	ectifiers are rectifiers that have been removed from a shelf. The cle will clear missing rectifiers from the
	r's memory and they will no longer be listed by this command. Return value for a system with 3 rectifiers on
shelf I wo	ould look like the following:
* lis	
rec	
G11	
G12	
G13	
ŀ	
* _	

login	Log-in
Svntax:	login "password"

where password is either the user, super-user or administrator password

Description

This command is used to log-in as a user, super-user or administrator. For example, if you are currently logged into the controller as a user but would like to change the site id you must first use this command to log-in as a super-user. You must be logged in as an administrator in order to upgrade the software and change passwords

ope	Operate a Control
Syntax:	ope obj,attr=value
	where: obj,attr is an object-attribute pair. For example, dc1,pbt.
Description	

This command is used to operate a system control parameter. Examples are listed below toillustrate how this command works.

ope ps1,usl=1Update serial link

ope dc1,stt="boost" Place plant into boost mode

You must be logged in as a super-user to use this command.

pas	Change Passwords
Syntax:	pas t,"password","password" where "t" is to change the user password, "s" to change the super-user password,and "a" to change the administrator password. password is the new password
Descript	ion

This command changes either the user or super-user password. You must be logged in as a super-user to use this command. The password is sent twice in order to avoid mistakes. Thepassword must have at least 6 characters but no more than 15 characters.

You must be logged in as a super-user to use this command.

sta	Report Status
Syntax:	sta obj,attr
	where: obj,attr is an object-attribute pair. For example, ps1,sid.

Description

This command reports the value of the measurement, configuration, or control parameters inthe system. A couple examples are listed below to illustrate how this command works.

sta dc1,vdcReport plant voltage sta dc1,adcReport plant load current

The command line would respond as follows for first command listed above.

* sta dc1,vdc

:DC1

VDC=-52.48

* _

The "*" in the example above is the user command line prompt. The line ":DC1" indicates that the information that follows is for the plant object. The line starting with "VDC" identifies the DC voltage. The "." line is the end-of-command identifier.

sum	Report Statistics
Syntax:	sum obj,attr where: obj,attr is an object-attribute pair defined by the following:sum dc1,adcReport plant load current statistics sum br1,hbtReport highest battery temperature statistics sum br1,amtReport ambient temperature statistics

Description

This command reports the highest hourly a averages, highest hourly maximum, and thehighest hourly minimum statistics for plant load and highest battery temperature. The following is an example of a command response:

* sum dc1,adc :DC1 ADCHHI= 30-MAY-03,12:03:00,127.3 14-FEB-03,11:15:37,126.9 24-DEC-03,02:30:13,126.2 LHI= 29-MAR-03,10:43:00,120.0 04-APR-03,11:15:53,121.1 21-SEP-03,07:13:10,124.3 HHA= 03-JAN-03,12:00:00,127.0 18-APR-03,11:00:00,126.5 21-OCT-03,02:00:00,126.1

The line ":DC1 ADC" indicates that the information that follows is for the plant load current.The "HHI=" indicates highest hourly instantaneous reading. The "LHI=" indicates highest hourly instantaneous reading. The "HHA=" indicates highest hourly average reading. The "." line is the end-of-command identifier. The "*" in the example above is the user command line prompt.

sum	Report Plant Load Trend Statistics

Syntax: sum dct1

Description

This command reports the plant trend statistics, which includes up to 16 daily highest hourly and lowest hourly instantaneous readings, up to 32 daily maximum hourly averages, and up to13 monthly averages of the daily maximum hourly averages. The following is an example of a command response:

* sum dct1
:DCT1 SRC=DC1 ADC
CLR=01-JAN-2001,12:00:00DHI=
29-JAN-2002,02:00;00,123.2
30-JAN-2003,05:00:00,120.1
31-JAN-2003,14:00:00,122.8 DLI=
29-JAN-2002,12:00;00,120.9
30-JAN-2003,08:00:00,118.7
31-JAN-2003,01:00:00,119.2 DHH=
29-JAN-2002,02:00;00,122.1
30-JAN-2003,05:00:00,119.7
31-JAN-2003,14:00:00,121.6 MAV=
31-JAN-2003,23:00:00,121.3

The "DHI=" indicates daily highest hourly instantaneous reading. The "DLI=" indicates daily highest hourly instantaneous reading. The "DHH=" indicates daily highest hourly average reading. The "MAV=" indicates monthly average of daily highest hourly average reading. The "·" line is the end-of-command identifier. The "*" in the example above is the user command line prompt.

sum Report Battery Discharge Statistics (Profile)

Syntax: sum dc1,bod

Description

This command reports the last battery discharge profile report. The report includes cleared date and time, start date and time, end date and time, duration in seconds, and up to 50 sample points. Each sample is time stamped in seconds. We compress the samples to derive aminimum set of data required to reconstruct the curve while retaining important coup de fouet minimum and maximum voltages and lowest voltage at end of discharge. The following is an example of a command response:

* sum dc1,bod :DC1 BOD CLR=29-JUN-04,10:27:11 BEG=30-JUN-04,10:38:36END=30-JUN-04,10:42:53DUR=256 VAL= 0,51.08 8,50.18 18,49.24 20,48.87 248,48.36 252,49.76 254,50.84 256,51.13

The "." line is the end-of-command identifier. The "* " in the example above is the user command line prompt.

GUI	Report GUI Compatibility	
Syntax:	GUI	
Description		
This command is for internal use only. It reports an EasyView compatibility number.		
The comr	The command response is: NE843GUI=1.0	

ali	Special Internet Command
Syntax:	ali
Description	on
This comn	nand is for internal use only. It exists for EasyView compatibility purposes only anddoes nothing.

Error Messages

While logging into the controller or while entering commands, you may encounter one or more of the following error messages:

Error Message	Description
!-112, SYNTAX ERROR	Unrecognizable command was entered.
!-220, SECURITY	Super-user command was entered by someone with user status.
!-221, EXCESSIVE LOGIN ATTEMPTS	Too many attempts were made to login with an unrecognized password.
!-223, INVALID PASSWORD	New password contains an illegal character.
!-224, NEW PASSWORD MISMATCH	First and second copy of new passwords don't match
!-304, INVALID PARAMETER	An attempt was made to change a parameter to an illegal value.
!-319, INVALID ATTRIBUTE	An invalid object id was specified in the command or, a command referred to an attribute that doesn't support it.
!-320, INVALID OBJECT	An invalid object id was specified in the command
!328, FEATURE DISABLED	An attempt was made to initiate a feature that is disabled.
:335, COULD NOT EXECUTE	Command could not execute because of active alarms or a conflicting operation.

Appendix C: Battery Functions

Float Mode

Float mode is the default operation mode of the power system. The system voltage, while in float mode, is determined by the configuration parameter Rectifier Float Set point (fsp) and may be adjusted by the Battery Thermal Compensation circuit, if active. No individual adjustment of plant rectifiers is necessary and load sharing among plant rectifiers is automatic in all plant modes and will take effect within several seconds of a new rectifier being added to the system.

The Rectifier Float Set point should be set per the battery manufacturer's recommendations. Note that the actual Rectifier Float Set point measured on the plant may differ from the value set by the user if battery thermal compensation (STC) is enabled.

Slope Thermal Compensation

The following is a list of slope thermal compensation parameters that can be configured in the controller.

High Temperature Alarm

Alarm threshold can be set from 30°C to 85°C. The alarm retires when the temperature drops to 10°C below the set threshold. The factory default setting is 55°C.

High Temperature Compensation

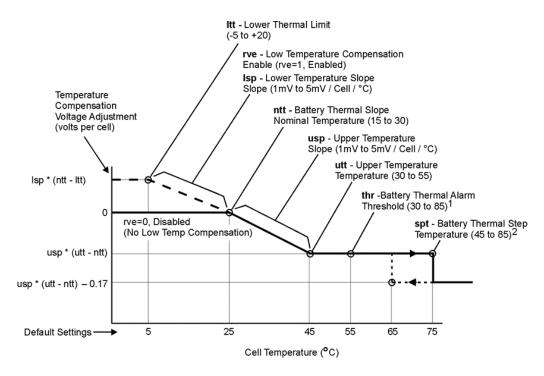
The system controller automatically enables high temperature compensation if a VT thermal probe is detected. The feature can be disabled by disconnecting all thermal probes and updating the serial links using the Lamp Test function. Settings for this feature are as follows.

V Step Down: Battery step temperature can be set from 45°C to 85°C. The factory default setting is 75°C.

High Comp Limit: The upper temperature thermal limit can be set from 30°C to 55°C. The factory default setting is 45°C.

Decrease: The upper temperature slope setting (rate of decrease) can be set from -1mV to -10mV in -.1mV steps. The factory default is -3mV.

Nominal Temperature: Temperature above or below which Slope Thermal Compensation is enabled. The stable range is 15 to 30°C. The factory default setting is 25°C.


The controller has a flexible Thermal Compensation feature which provides voltage compensation from that level established by the Plant Float Set-Point (fsp) or Boost Set-Point (bsp), dependent on the highest temperature monitored by the QS873A VT-Probes attached to the system batteries. Thermal Compensation should be used in a plant containing sealed or valve regulated maintenance free batteries. Note that Thermal Compensation is automatically enabled from the factory when

Valve-Regulated Lead Acid batteries are the system battery type. The feature is not automatically enabled upon detection of a VT-Probe. Refer to the Installation Instructions for more details on wiring and configuring this feature.

Thermal Compensation lowers plant voltage from the fsp for monitored battery temperatures which are above the ideal temperature established during configuration as the Battery Thermal Slope Nominal Temperature (ntt). (The items in parenthesis are the user configurable points referred to in the graph shown below.) Lowering the plant voltage helps to keep the batteries at their optimum state of charge while protecting them from thermal runaway.

Thermal runaway is a complex sealed battery phenomenon where, for one or more of a number of reasons, one or more cells in a string are unable to dissipate the internal heat generated by their charging current and experience an increase in internal temperature. By lowering the float voltage as cell temperature increases, the float current is lowered to a point where this destructive behavior can be avoided. If a cell failure is imminent and the cell temperature continues to rise above the threshold configured for Battery Thermal Step Temperature (stp), plant voltage drops in a single step to a level which keeps the remaining cells in the string from overcharging and being damaged. Refer to Figure C-1 for a graphical view of Battery Thermal Compensation and the relationship of its various set points.

- 1. The Battery Thermal Alarm occurs when the temperature rises above the thr set point. It retires when the temperature decreases to 10°C below the thr set point (45°C default).
- Plant voltage decreases an additional 0.17 volts per cell when the temperature increases above the spt set point. It is increased 0.17 volts per cell when the temperature decreases to 10°C below the spt set point, as indicated by the dashed line (65°C default).

Figure C-1: Slope Thermal Compensation

The following describes the configuration parameters which may be activated or altered by the user. Referto Appendix D for the ranges of values the parameters may take and their factory default settings.

Lower Thermal Limit (Itt): The lower temperature where, if Low Temperature Compensation is enabled, the controller will increase plant voltage to a level corresponding to (Isp * (ntt - Itt)* 24)V above the fsp. Plant voltage will be increased proportionally at any temperature between this point and the Battery Thermal Slope Nominal Temperature (ntt).

Low Temperature Compensation Enable (rve): A 0 disables and 1 enables the Low Temperature Thermal Compensation feature. Since rve increases plant voltage rather than decreasing it based on temperature, the option is provided to disable it separately from the entire feature so that equipment loads sensitive to high voltages can be protected.

Lower Temperature Slope (Isp): The slope rate for the voltage increase per cell when the battery temperature is below the ntt (Battery Thermal Slope Nominal Temperature).

Battery Thermal Slope Nominal Temperature (ntt): The zero compensation temperature point. Temperatures monitored between this point and the Upper Temperature Limit (utt) will result in a proportional decrease of plant voltage to a level corresponding to (usp*(utt-ntt)*24)V below the fsp at the utt. If Low Temperature Compensation is enabled, temperatures monitored between this point and the Lower Thermal Limit (ltt) will result in a proportional increase of plant voltage to a level corresponding to (lsp*(ntt-ltt)*24)V above the fsp at the ltt.

Upper Temperature Slope (usp): The slope rate for the voltage decrease per cell when the battery temperature is above the ntt (Battery Thermal Slope Nominal Temperature).

Upper Temperature Limit (utt): The upper temperature where Battery Thermal Compensation will have reduced plant voltage to a level corresponding to (usp*(utt-ntt)*24)V below the fsp. Plant voltage will be reduced proportionally at any temperature between this point and the Battery Thermal Slope Nominal Temperature (ntt).

Battery Thermal Alarm Threshold (thr): A monitored battery temperature above this threshold results in a Battery Thermal alarm with a PMN severity.

Battery Thermal Step Temperature (spt): A monitored battery temperature above this threshold results in an additional 4.08V step decrease in plant voltage

Plant Battery Test

The following is a list of plant battery test parameters that can be configured in the controller. The result of the Plant Battery Test is available in the Batteries sub-menu of the Status menu.

Manual Test: Permits manually starting a battery discharge test. The test can be set to end on either of the following two parameters.

Duration: The duration of the test can be set from 0.1 hours to 99.9 hours.

Cutoff Cell V: The test can be set to end when battery cell voltage reaches this cutoff voltage. **Cutoff** voltage can be set from 1.5V to 2.0V.

Automatic Test: This utility offers the flexibility of running pre-programmed battery tests at specific times and days, and for specific durations.

Automatic Test: Enable or disable automatic periodic running of the battery test. The factory default setting is disabled.

Interval: The test interval (time between tests) can be set from 1 to 18 months in 1 month increments. The factory default setting is 12 months.

Next Test: Enter a particular day in dd-mm-yy format to automatically run the battery test on that day.

Start Time: Enter a particular time in hh-mm format to automatically run the battery test at that time. The setting can be configured from 0 to 23 hours. 00:00 is midnight.

Hours from BD: Time interval needed to elapse since the last Battery on Discharge alarm before a battery test can be performed. This can be set from 0 to 240 hours in 1 hour increments. The factory default setting is 72 hours.

Recharge Amp Limit: This section contains the settings for battery recharge current limit.

Limit: Enable or disable battery discharge current limiting.

Limit To: Current limit setting, from 5A to 1000A. The factory default setting is 50A.

During this test, the controller lowers the rectifier voltage to 44V. (This value was chosen to be higher than 1.2V plus the highest possible LVD contactor disconnect threshold so as not to accidentally open the LVD contactor.) Lowering the rectifier output voltage to 44V creates a battery on discharge condition. If the batteries are present and healthy, the plant voltage will remain above 48V and the batteries will support the load. If the batteries are not present or are not able to support the load, the plant voltage will immediately drop to approximately 44V without any consequence to the load. The Battery on Discharge alarm is masked during this test.

The test is terminated by the occurrence of any of the following conditions:

- Initiating another Plant Battery Test. That is, once the test has been initiated, the test may be stopped by initiating another test either through the controller or by shorting pins 19 and 20 of the host interface connector.
- An alarm condition occurring. Any alarm condition that occurs during this test will result in the test being aborted regardless of whether the contact-closure exists between pins 19 and 20 of the host interface connector.
- The test has continued for over 100 minutes.
- The plant voltage has dropped below 44V. In this case, the system will abort the test and resume rectifier operation.

After the test has stopped, the plant will revert to the float mode. It may go to boost mode if the auto-boost feature has been enabled.

Boost Mode

Boost charging is a feature of the controller, which allows the user to temporarily raise the plant voltage to a higher, predetermined level, thus, reducing the time needed to charge batteries. The system may manually be placed in the boost-mode through the front panel.

Note that the measured boost voltage may not exactly match the value chosen by the user if the thermal compensation feature is enabled. This is because the controller performs thermal compensated boost charging and will adjust the boost value based on the battery temperature per the slope chosen by the user.

The plant will exit the boost mode and enter the float mode if any of the following occurs:

- The current flowing into the battery string(s) is less than 5A
- The duration of boost mode charging has reached the configured duration time (1-80) hours
- The controller receives either a High-Voltage, Rectifier Fail alarm, or High-Battery Temperature alarms
- User sets the plant state to Float via the TI.

Once initiated, the boost mode may be exited by placing the Plant State to Float.

Auto-Boost Charge

This feature may be enabled from the TI. See Appendix B for details. When enabled, the plant enters the boost-charging mode of operation following a battery discharge once the BD alarm has been retired, provided the duration of the discharge was greater than 4 minutes. The controller will not enter the auto-boost-charging mode if the discharge duration was less than 4 minutes.

When in auto-boost mode, the controller raises the plant voltage to the value selected by the user. The controller keeps the plant in this mode of operation for a minimum of 5 minutes. The exit conditions for the Auto-Boost Charge are the same as those for Boost Charge.

Redundancy Loss Function

This feature must be enabled from the front panel. The controller determines the number of rectifiers present and compares the actual currents being drawn by the load to that produced by the total number of rectifiers less one. If the measured load current exceeds the N rectifier's capacity for over 1 min, the alarm condition is activated. The alarm condition is latched on until the Clear Events command is activated from the front panel.

This feature may be used by customers to determine if the load being served is greater than N rectifiers worth, in an N+1 system. That is, the load requirements have changed such that the power system is no longer operating as a redundant power system. An additional rectifier may be required to ensure continuous redundant operation.

If enabled, this feature will be disabled during battery discharge and recharge conditions. It will be enabled when the battery charging current falls below 5A.

Battery Voltage Imbalance Detection

This feature requires the use of the ES771A Remote Voltage Monitoring Module. Note that this feature is automatically enabled if the controller detects the presence of the ES771A module. This module is to be placed in the electronics cabinet and utilizes the QS873A VT-Probes to measure the voltage of the battery string being monitored. The VT-Probe is to be placed on the negative battery terminal located in the middle of the battery string. The controller has data on the plant voltage; the half-string voltage measured from each monitored battery string is compared to the plant voltage minus the measured half-string voltage. If the comparison results in a difference of greater than 1.7V (or the configured value) for longer than 12 hours, the alarm is asserted. The alarm may be retired by initiating the Clear Events command from the front panel.

After this feature has been enabled, the system waits for 12 hours to ensure the battery strings are stable. A battery string is considered to be stable if the charging current is less than 3A. If a stable battery string yields a difference measurement greater than 1.7V (or the configured value) for over 12 continuous hours, a Battery Voltage Imbalance alarm is generated.

When the alarm is issued, the Float Set-Point (fsp) and the Battery On Discharge (BD) threshold values are reduced by fsp/Number of Cells per string. Once the alarm has been cleared by the Clear Events (CLE) command, the plant reverts to its normal Float Set-Point (fsp); however, the BD threshold is maintained at the new threshold for up to four minutes before reverting back to the old threshold. This is done to ensure the batteries have had enough time to charge up to the nominal fsp and to prevent any spurious BD alarm conditions.

This feature may be used by customers as part of their overall battery maintenance program in determining the health of battery strings. A voltage imbalance of 1.7V between half-string voltages may mean a shorted- cell, loose connection, or some other abnormality somewhere in the string. A service person should be sent out to the site and determine if the string should be replaced.

Battery Recharge Current Limit

The battery recharge current limit feature enables the controller to limit the recharge current flowing into a battery section during the charge cycle. The recharge current flowing into the battery section can be limited to any value between 5A and 1000A.

Note that this feature will not have any impact on the current being delivered to the load. Further, there will be no effect on the discharge current flowing from the battery strings to the load during an ac fail condition. The controller will maintain the recharge current within 10% of the set level.

Battery Parameter Defaults

The controller has been configured with battery specific defaults. These battery types are shown in the top portion of Table C-1 Supported Battery Types. The generic Valve –Regulated Lead Acid battery is the default battery type for this controller configuration. Battery models and their parameters can be added or adjusted in the field.

Vendor	Batte	ery Type	String Or Battery Capacity 8hr rate(AH)
Generic	Valve-Reg	(VRLA)	0
Generic	Flooded	Flooded	0
Generic	Ni-Cd		0
Generic	Li-LMP		0
Generic	Li-ELiTE		63
OmniOn Power™	12A100FT	(VRLA)	96
OmniOn Power™	12A150FT	(VRLA)	145
OmniOn Power™	12IR150/150LP	(VRLA)	145
Unigy	3A125-33L	(VRLA)	2000
Unigy	3A95-21L	(VRLA)	950
Unigy	3A95-27L	(VRLA)	1235
Unigy	3A95-33L	(VRLA)	1520
Unigy	6A95-13L	(VRLA)	570
Unigy	6A95-15L	(VRLA)	665
OmniOn Power™	IR30EC	(VRLA)	27
OmniOn Power™	IR40EC	(VRLA)	35
OmniOn Power™	L54V63FTX	(Li-ELiTE)	63
Saft	NCX-125	(NiCad)	125
Saft	NCX-80	(NiCad)	80
North Star	NSB110FT	(VRLA)	110
North Star	NSB170FT	(VRLA)	170
North Star	NSB60FT	(VRLA)	60
Avestor	SE48S63	(Li-LMP)	63
Avestor	SE48S80	(Li-LMP)	80
C&D	TEL12-105F	(VRLA)	100
NA	None		NA

Table C-1 Supported Battery Types

Appendix D: Default Configurations

Table D-1 Standard Configuration Item Defaults provides the default settings for the configurable parameters and features that are associated in the controller. Also listed are the battery technologies and specific battery models included in the configuration file. Specific battery models assume the configuration defaults for their generic technology class except for a specific capacity and model name. The generic Valve Regulated Lead Acid battery type will be the factory default Battery Type selected and configured for the controller configuration. Changes to individual features, parameters, and thresholds for each battery type will be allowed in the field. These changes will be stored in non-volatile memory. However, if the Load Factory Defaults control/operation command is initiated, all assigned values shown in Table D-1 Standard Configuration Item Defaults and Table C-1 Supported Battery Types will be restored. The configurations made in the field will be lost.

There are four sections for determining the defaults for the standard configuration program file. These sections are Standard, 24V Battery, 48V Battery, and Alarms. This document will show four separate tables for these categories. In addition, the Excel spreadsheet is also attached.

The Standard section includes settings and thresholds independent of the primary output voltage of the system. Generally, these items are set using information that does not depend on the battery reserve system.

The 24V Battery section includes settings and thresholds that are generally dependent of the primary 24V output voltage of the system. Generally, these items are set using information that depends on the battery reserve system configured.

The 48V Battery section includes settings and thresholds that are generally dependent of the primary 48V output voltage of the system. Generally, these items are set using information that depends on the battery reserve system configured.

The Alarms section provides the assigned severities, alarm output relays, and LED assignments for the standard configuration.

This document will continue to be revised and updated as feedback and additional requirements come in from the field or as new configurable features and thresholds are added to the standard controller. Features, thresholds, and other configurable items not addressed in the list will remain at the factory default set for each respective item as defined in the standard product offering. Note: Custom configurations can be made available through configuration of application or customer preferred defaults for the information in the following tables for certain application.

			1		POWE	
			Factory Default	Factory 24V Rectifier Default	Default	
Category	Description	Range	Factory	Factory 24V	Factory 48V	obj,attr
	Site ID	≤ 20 characters	1111		i.o.v	PS1,SID
	Site Description	≤ 55 characters	1111			PS1,SDE
	Controller Description	Plant Description	"NE843A"			PS1,DES
	System Description	≤ 55 characters	"Infinity NE"			PS1,SYS
	Plant Description	Plant Description	"H569-2448"			DC1,DES
	Plant Voltage Type	24V or 48V		"24V"	"48V"	DC1,TYP
	Automatic Daylight Savings Feature	1=Enabled 0=Disabled	1			PS1,DLS
	Display Contrast	0 to 100%	50			PS1,DCT
	Temperature Display Units	C or F	"C"			PS1,TUN
	Date Format		"MM/DD/YYYY"			PS1,DTF
	Time Format	12 or 24	12			PS1,TMF
	Front Panel Configuration	1=Enabled 0=Disabled	1			PS1,FPC
	Remote rectifier Off	1=Enabled 0=Disabled	0			PS1,RRF
	Emergency Power-off Enable	1=Enabled 0=Disabled	1			PS1,POE
Controller	User Name Login Enable	1=Enabled 0=Disabled	О			PS1,USR
	Front Panel PIN enable	า=Enabled 0=Disabled	0			PS1,FPE
	Front Panel Pin Default	Four digits 0-9	"0000"			PS1,FPP
	Front Panel PIN timeout	1 to 120 minutes	30			PS1,FPT
	Daylight Saving Start	mon:wk:dow:min mon:-1:dom:min	"3:2:0:120"			PS1,DSS
	Daylight Saving End	mon:wk:dow:min mon:-1:dom:min	"11:1:0:120"			PS1,DSE
	Uninstall Equipment Timeout	0 to 60s	15			PS1,UET
	Controller Ambient Temperature High	35 to 75 °C	75			AMTH1,THR
	Controller Ambient Temperature Low	-40 to 10 C 1=Enabled	-40			AMTL1,THR
	Critical Equals Major	0=Disabled	1			PS1,CEM
	User Password		"OmniOn Power"			PAS U,
	Super-user Password		"super-user"			PAS S,
	Administrator Password		"administrator"			PAS A,
	Battery Disconnect Control Mode	0=none, 1=voltage 2=voltage/time	1			CN1,DAM
	Battery Disconnect Time Delay		0			CN1,DDY
Low Voltage	Battery Reconnect Control Mode	0=none, 1=voltage 2=voltage/time	1			CN1,RAM
Disconnects	Battery Reconnect Time Delay	0 to 300 sec	0			CN1,RDY
DI3COLILIECTS	Battery Disconnect Description	<=32 Chars	"LVBD1"			CN1,DES
Battery Disconnect1	Battery Disconnect Open Description	<=32 Chars	"LVBD1 Open"			CNO1,DES
55511116661	Battery Disconnect Open Front Panel Description	<=32 Chars	"LVBD1 Open"			CNO1,FDS
	Battery Disconnect Failed Description	<=32 Chars	"LVBD1 Failed"			CNF1,DES
	Battery Disconnect Failed Front Panel Description	<=32 Chars	"LVBD1 Failed"			CNF1,FDS
Load Disconnect 1	Load 1 Disconnect	ใ=Enabled 0=Disabled]			CN2,ENA

Table D-1 Standard Configuration Item Defaults

			Factory Default	Factory 24V Rectifier Default	Factory 48V Rectifier Default	
	Description	Range	Factory	Factory 24V	Factory48V	obj,attr
	Load 1 Disconnect Control Mode	0=none, 1=voltage 2=voltage/time	1			CN2,DAM
	Load 1 Disconnect Voltage	19.5 to 25V -39.0 to -50V		21.00	42.00	CN2,DTH
	Load 1 Disconnect Time Delay	0 to 300 minutes	0			CN2,DDY
	Load 1 Reconnect Control Mode	0=none, 1=voltage 2=voltage/time	1			CN2,RAM
	Load 1 Reconnect Voltage	19.5 to 27 -39.0 to -55.0V		22.00	44.00	CN2,RTH
	Load 1 Reconnect Time Delay	0 to 300 sec	0			CN2,RDY
	Load 1 Disconnect Description	<=32 Chars	"LVLD1"			CN2,DES
	Load 1 Disconnect Open Description	<=32 Chars	"LVLD1 Open"			CNO2,DES
	Load 1 Disconnect Open Front Panel Description	<=32 Chars	"LVLD1 Open"			CNO2,FDS
	Load 1 Disconnect Failed Description	<=32 Chars	"LVLD1 Failed"			CNF2,DES
	Load 1 Disconnect Failed Front Panel Description	<=32 Chars	"LVLD1 Failed"			CNF2,FDS
	LV Load 2 Disconnect		0			CN3,ENA
	LV Load 2 Disconnect Control Mode	0=none, 1=voltage 2=voltage/time	1			CN3,DAM
	LV Load 2 Disconnect Voltage	19.5 to 25V -39.0 to - 50V		21.00	42.00	CN3,DTH
		0 to 300 minutes	0			CN3,DDY
	LV Load 2 Reconnect Control Mode	0=none, 1=voltage 2=voltage/time	1			CN3,RAM
Load	LV Load 2 Reconnect Voltage	19.5 to 27 -39.0 to - 55.0V		22.00	44.00	CN3,RTH
Disconnect 2		0 to 300 sec	0			CN3,RDY
	Load 2 Disconnect Description	<=32 Chars	"LVLD2"			CN3,DES
	Load 2 Disconnect Open Description	<=32 Chars	"LVLD2 Open"			CNO3,DES
	Load 2 Disconnect Open Front Panel Description	<=32 Chars	"LVLD2 Open"			CNO3,FDS
	Load 2 Disconnect Failed Description	<=32 Chars	"LVLD2 Failed"			CNF3,DES
	Load 2 Disconnect Failed Front Panel Description	<=32 Chars	"LVLD2 Failed"			CNF3,FDS
	Load 3 Disconnect	1=Enabled 0=Disabled	0			CN4,ENA
	Load 3 Disconnect Control Mode	0=none, 1=voltage 2=voltage/time	1			CN4,DAM
	Load 3 Disconnect Voltage	19.5 to 25V -39.0 to - 50V		21.00	42.00	CN4,DTH
	Load 3 Disconnect Time Delay	0 to 300 minutes	0			CN4,DDY
	Load 3 Reconnect Control Mode	0=none, 1=voltage 2=voltage/time	1			CN4,RAM
Load	Load 3 Reconnect Voltage	19.5 to 27 -39.0 to - 55.0V		22.00	44.00	CN4,RTH
Disconnect 3	Load 3 Reconnect Time Delay	0 to 300 sec	0			CN4,RDY
	Load 3 Disconnect Description	<=32 Chars	"LVLD3"			CN4,DES
	Load 3 Disconnect Open Description	<=32 Chars	"LVLD3 Open"			CNO4,DES
	Load 3 Disconnect Open Front Panel Description	<=32 Chars	"LVLD3 Open"			CNO4,FDS
	Load 3 Disconnect Failed Description	<=32 Chars	"LVLD3 Failed"			CNF4,DES
	Load 3 Disconnect Failed Front Panel Description	<=32 Chars	"LVLD3 Failed"			CNF4,FDS

			Factory Default	Factory 24V Rectifier Default	Factory 48V Rectifier Default	
Category	Description	Range	Factory	Factory 24V	Factory 48V	obj,attr
	ID1 Type	None/CN1/ CN2/CN3/CN4	"CN1"			DCN01,TYP
	ID2 Type	None/CN1/ CN2/CN3/CN4	"CN2"			DCN02,TYP
	ID3 Type	None/CN1/ CN2/CN3/CN4	"CN3"			DCN03,TYP
Contactor	ID4 Type	None/CN1/CN2/CN3/CN4	"CN4"			DCN04,TYP
Interfaces	ID5 Type	None/CN1/ CN2/CN3/CN4				DCN05,TYP
iriteriaces	ID6 Type	None/CN1/ CN2/CN3/CN4				DCN06,TYP
	ID7 Type	None/CN1/CN2/CN3/CN4	"None"			DCN07,TYP
	ID8 Type	None/CN1/ CN2/CN3/CN4	"None"			DCN08,TYP
	Imminent LVBD Shutdown	1=Enabled 0=Disabled	0			DC1,ISD
	Rectifier Redundancy Loss Enable	1=Enabled 0=Disabled	0			GM1,RME
	Rectifier Loadshare Enable	1=Enabled 0=Disabled	1			GM1,LSE
	Rectifier Float Current Limit	30 to 100%	100			GM1,FCL
	Rectifier Boost Current Limit	30 to 100%	100			GM1,BCL
	Group Standby/Sequencing Enable	1=Enabled 0=Disabled	О			DC1,RSQ
	Remote rectifier Off Enable	1=Enabled 0=Disabled	0			PS1,RRF
Rectifiers	Rectifier Redundancy Threshold	1 to 80	1			RLS1,THR
	Multiple Rectifier Fail	2 to 88	2			MFA1,THR
	Oring FET test enable	1=Enabled 0=Disabled	1			GM1.OFT
	Efficiency Enable	1=Enabled 0=Disabled	1			DC!,EME
	Efficiency Target	20% to 95%	70			DC1,EMT
	Efficiency Rectifier Turn On Threshold	25% to 100%	76			DC1,EMO
	Converter Internal Selective High Output Voltage Shutdown	25.0 to 30.0V50.0 to 60.0V		58.0	29.0	CP1,VSD
	High Output Voltage Major Alarm	25.0 to 30.0V 50.0 to 60.0V		56.0	28.5	CHVA1, THR
	High Output Voltage Minor	24.0 to 30.0V		F (0	200	CLIEVA TUD
	Alarm	48.0 to 60.0V		54.0	27.0	CHFV1,THR
	Output Voltage Set-Point	23.0 to 27.2V 46.0 to 54.5V		52.0	26.0	CP1,VSP
	Low Voltage Alarm	20.0 to 27.0V 40.0 to 54.0V		46.0	23.0	CVLA1,THR
	Converter Current Limit	30 to 100%	100			CP1,CLM
Converters	Converter Redundancy Loss Enable	1=Enabled 0=Disabled	0			CP1,RME
	Remote converter Off Enable	1=Enabled 0=Disabled	0			CP1,ROF
	Low Voltage Disconnect Input Threshold	20.0 to 25.0V 40.0 to 50.0V		23.0	46.0	CP1,DTH
	Low Voltage Reconnect Input Threshold	22.0 to 27.0V 44.0 to 54.0V		25.0	50.0	CP1,RTH
	Low Voltage Disconnect Enable	1=Enabled 0=Disabled	0			CP1,LVD
	Converter Redundancy Threshold	1 to 32	1			CRL1,THR
	Multiple Converter Fail	2 to 30	2			CMFA1,THR

Table D-1 Standard Configuration Item Defaults

			Factory Default	Factory 24V Rectifier Default	Factory 48V Rectifier Default	
Category	Description	Range	Factory	Factory 24V	Factory 48V	obj,attr
	Battery 1 Type Description	<=32 chars	"Generic Valve-Reg Battery"			BT01,DES
	Battery 1 Type		"Valve-Reg"			BT01,BTY
Battery Type Definitions	Battery 1 Class		"VALVE-REG"			BT01,BTC
	Battery 1 Capacity		0			ВТ01,САР
	Battery 2 Type Description	<=32 chars	"Generic Flooded Battery"			BT02,DES

Table D-1 Standard Configuration Item Defaults

			Factory Defaul	Factory 24V Rectifier Default	Factory 48V Rectifier Default	
Category	Description	Range	Factory	Factory 24V	Factory 48V	obj,attr
	Battery 2 Type		"Flooded"			BT02,BTY
	Battery 2 Class		"FLOODED"			BT02,BTC
	Battery 2 Capacity		0			BT02,CAP
	Battery 3 Type Description	<=32 chars	"Generic NiCd Battery"			BT03,DES
	Battery 3 Type		"NiCd"			BT03,BTY
	Battery3 Class		"NICD"			BT03,BTC
	Battery 3 Capacity		0			BT03,CAP
	Battery 4 Type Description	<=32 chars	"Generic Li-LMP Battery"			BT04,DES
	Battery 4 Type		"Li-LMP"			BT04,BTY
	Battery 4 Class		"LI-LMP"			BT04,BTC
	Battery 4 Capacity		63			BT04,CAP
	Battery 5 Type Description	<=32 chars	"Generic Li-ELiTE Battery"			BT05,DES
	Battery 5 Type		"Li-ELiTE"			BT05,BTY
	Battery 5 Class		"LI-ELITE"			BT05,BTC
	Battery 5 Capacity		63			BT05,CAP
	Battery 6 Type Description	<=32 chars	"OmniOn Power™ (408014140)"			BT06,DES
	Battery 6 Type		"12A100FT"			BT06,BTY
	Battery 6 Class		"VALVE-REG"			BT06,BTC
	Battery 6 Capacity		96			BT06,CAP
	Battery 7 Type Description	<=32 chars	" OmniOn Power™ (408520655)"			BT07,DES
	Battery 7 Type		"12A150FT"			BT07,BTY
	Battery 7 Class		"VALVE-REG"			BT07,BTC
	Battery 7 Capacity		145			BT07,CAP

Table D-1 Standard Configuration Item Defaults

				<u> </u>	POWE	
			Factory Defaul	Factory 24V Rectifier Default	Factory 48V Rectifier Default	
Category	Description	Range	Factory	Factory 24V	Factory 48V	obj,attr
	Battery 8 Type Description	<=32 chars	"OmniOn Power™ (408520663)"			BT08,DES
	Battery 8 Type		"12IR150/150LP"			BT08,BTY
	Battery 8 Class		"VALVE-REG"			BT08,BTC
	Battery 8 Capacity		145			BT08,CAP
	Battery 9 Type Description	<=32 chars	"Unigy (408567044)"			BT09,DES
	Battery 9 Type		"3A125-33L"			BT09,BTY
	Battery 9 Class		"VALVE-REG"			BT09,BTC
	Battery 9 Capacity		2000			BT09,CAP
	Battery 10 Type Description	<=32 chars	"Unigy (408545495)"			BT10,DES
	Battery 10 Type		"3A95-21L"			BT10,BTY
	Battery 10 Class		"VALVE-REG"			BT10,BTC
	Battery 10 Capacity		950			BT10,CAP
	Battery 11 Type Description	<=32 chars	"Unigy (408545553)"			BT11,DES
	Battery 11 Type		"3A95-27L"			BT11,BTY
	Battery 11 Class		"VALVE-REG"			BT11,BTC
	Battery 11 Capacity		1235			BT11,CAP
	Battery 12 Type Description	<=32 chars	"unigy (408545611)"			BT12,DES
	Battery 12 Type		"3A95-33L"			BT12,BTY
	Battery 12 Class		"VALVE-REG"			BT12,BTC
	Battery 12 Capacity		1520			BT12,CAP
	Battery 13 Type Description	<=32 chars	"Unigy (408545693)"			BT13,DES
	Battery 13 Type		"6A95-13L"			BT13,BTY
	Battery 13 Class		"VALVE-REG"			BT13,BTC

Table D-1 Standard Configuration Item Defaults

			Factory Default	Factory 24V Rectifier Default	Factory 48V Rectifier Default	
Category	Description	Range	Factory	Factory 24V	Factory 48V	obj,attr
	Battery 13 Capacity		570			BT13,CAP
	Battery 14 Type Description	<=32 chars	"Unigy (408545710)"			BT14,DES
	Battery 14 Type		"6A95-15L"			BT14,BTY
	Battery 14 Class		"VALVE-REG"			BT14,BTC
	Battery 14 Capacity		665			BT14,CAP
	Battery 15 Type Description	<=32 chars	"OmniOn Power™ (407928761)"			BT15,DES
	Battery 15 Type		"IR30EC"			BT15,BTY
	Battery 15 Class		"VALVE-REG"			BT15,BTC
	Battery 15 Capacity		27			BT15,CAP

Table D-1 Standard Configuration Item Defaults

			Factory Default	Factory 24V Rectifier Default	Factory 48V Rectifier Default	
tegory	Description	Range	Factory	Factory 24V	Factory 48V	obj,attr
	Battery 16 Type		"OmniOn			
	Description	<=32 chars	Power™ (407928753)"			BT16,DES
	Battery 16 Type		"IR40EC"			BT16,BTY
	Battery 16 Class		"VALVE-REG"			BT16,BTC
	Battery 16 Capacity		35			BT16,CAP
			"OmniOn			B110,CA1
	Battery 17 Type		Power™			BT17,DES
	Description	<=32 chars	(CC408612792)"			B117,B23
	Battery 17 Type		"L54V63FTX"			BT17,BTY
	Battery 17 Class		"LI-ELITE"			BT17,BTC
	Battery 17 Capacity		63			BT17,CAP
	Battery 18 Type					
	Description	<=32 chars	"Saft ()"			BT18,DES
	Battery 18 Type		"NCX-125"			BT18,BTY
	Battery 18 Class		"NICD"			BT18,BTC
	Battery 18 Capacity		125			BT18,CAP
	Battery 19 Type		"Saft			DTIO DEC
	Description	<=32 chars	(408539365)"			BT19,DES
	Battery 19 Type		"NCX-80"			BT19,BTY
	Battery 19 Class		"NICD"			BT19,BTC
	Battery 19 Capacity		80			BT19,CAP
	Battery 20 Type		"North Star			DT20 DEC
	Description	<=32 chars	(408508752)"			BT20,DES
	Battery 20 Type		"NSB110FT"			BT20,BTY
	Battery 20 Class		"VALVE-REG"			BT20,BTC
	Battery 20 Capacity		110			BT20,CAP
	Battery 21 Type		"North Star			חדמו חבכ
	Description	<=32 chars	(408508760)"			BT21,DES
	Battery 21 Type		"NSB170FT"			BT21,BTY
	Battery 21 Class		"VALVE-REG"			BT21,BTC
	Battery 21 Capacity		170			BT21,CAP
	Battery 22 Type		"North Star			BT22,DES
	Description	<=32 chars	(408503910)"			·
	Battery 22 Type		"NSB60FT"			BT22,BTY
	Battery 22 Class		"VALVE-REG"			BT22,BTC
	Battery 22 Capacity		60			BT22,CAP
	Battery 23 Type		"Avestor			BT23,DES
	Description	<=32 chars	(408531611)"			
	Battery 23 Type		"SE48S63"			BT23,BTY
	Battery 23 Class		"LI-LMP"			BT23,BTC
	Battery 23 Capacity		60			BT23,CAP
	Battery 24 Type		"Avestor			BT24,DES
	Description	<=32 chars	(CC408574065)"			·
	Battery 24 Type		"SE48S80"			BT24,BTY
	Battery 24 Class		"LI-LMP"			BT24,BTC
	Battery 24 Capacity		80			BT24,CAP
	Battery 25 Type		"C&D			BT25,DES

Table D-1 Standard Configuration Item Defaults

			Factory Default	Factory 24V Rectifier Default	Factory 48V Rectifier Default	POWE
Category	Description	Range	Factory	Factory 24V	Factory 48V	obj,attr
	Battery 25 Type		"TEL12-105F"			BT25,BTY
	Battery 25 Class		"VALVE- REG"			BT25,BTC
	Battery 25 Capacity		100			BT25,CAP
Batteries	Number Of Battery Strings	0 to 16 Strings	0			DC1,NST
	Battery Model	≤ 14 Characters	"Valve-Reg"			DC1,BTY
	Timed Test Duration	0:0:0 to 23:59:59	4:00:00			BR1,TMD
	Automatic Battery Test Feature	disabled, 20%, timed I to 18 Months	"disabled"			BR1,BTE
	Automatic Test (AT) Interval Date For Next Automatic Test		12 1/1/2099			BR1,TIN
Dattani		yyyy-mm-dd 0 to 23				BR1,ATD
Battery Discharge	Start Time For Automatic Test	0 to 23	0			BR1,ATH
Test	Hours To Wait From Last BD Before AT	0 to 240 hours	72			BR1,ATW
L	Manual Test Type	disabled, 20%, timed	"disabled"			BR1,MTT
	Reserve Time Low (Full Capacity)	0.0 to 99.9 hours	0			RTL1,THR
	Real-time Reserve Low (During BD)	0.0 to 99.9 hours	0			RRTL1,THR
	String 1 contactor	CN1 to CN4	"DCN01"			B01,CON
	String 1 Number of strings	1 to 70	0			B01,NST
	String 1 Battery type		"VALVE- REG"			B01,BTY
	String 2 contactor	CN1 to CN4	"DCN01"			B02,CON
Battery	String 2 Number of strings	1 to 70	0			B02,NST
Sections	String 2 Battery type		"VALVE- REG"			B02,BTY
	String 3 contactor	CN1 to CN4	"DCN01"			B03,CON
	String 3 Number of strings	1 to 70	0			B03,NST
	String 3 Battery type		"VALVE- REG"			B03,BTY
	Boost Maximum Duration	1 to 80 Hours	1			BS1,TMD
	Automatic Boost Feature	disabled, timed, or current	"disabled"			BS1,ATM
Battery Boost	Auto Boost BD Multiplication Factor	0.1 to 9.0	0.5			BS1,AMF
	Auto Boost Termination Current Threshold	1 to 999A	5			BS1,CTA
	Plant Shunt Type	Battery/None /Load	"BATTERY"			DCMC1,TYP
	Plant Shunt Current Rating	0 to 9999 Amps	600			DCMC1,SHA
	ID1 Type	Battery/None /Load	"BATTERY"			DCM01,TYP
	ID1 Shunt Current Rating	0 to 9999 Amps	300			DCM01,SHA
	ID2 Type	Battery/None /Load	"NONE"			DCM02,TYP
	ID2 Shunt Current Rating	0 to 9999 Amps	300			DCM02,SHA
Shunt Monitors	ID3 Type	Battery/None /Load	"NONE"			DCM03,TYP
	ID3 Shunt Current Rating	0 to 9999 Amps	600			DCM03,SHA
	ID4 Type	Battery/None /Load	"NONE"			DCM04,TYP
	ID4 Shunt Current Rating	0 to 9999 Amps	600			DCM04,SHA
	ID5 Type	Battery/None/Load	"NONE"			DCM05,TYP
	ID5 Shunt Current Rating	0 to 9999 Amps	600			DCM05,SHA
	ID6 Type	Battery/None/Load	"NONE"			DCM06,TYP
	ID6 Shunt Current Rating	0 to 9999 Amps	600			DCM06,SHA

Table D-1 Standard Configuration Item Defaults

			Factory Default	Factory 24V Rectifier Default	Factory 48V Rectifier Default	
Category	Description	Range	Factory	Factory 24V	Factory 48V	obj,attr
	ID7 Type	Battery/None /Load	"NONE"			DCM07,TYP
	ID7 Shunt Current Rating	0 to 9999 Amps	600			DCM07,SHA
	ID8 Type	Battery/None /Load	"NONE"			DCM08,TYP
	Rating	0 to 9999 Amps	600			DCM08,SH A
	All Load Shunts Monitored	1=Enabled 0=Disabled	0			DC1,MLS
	Input 1 Description	<=32 chars	"Fuse Alarm Major 24V"			IN001,DES
	Input 1 Type		"FAJ1"			IN001,TYP
	Input 1 Active State	CLOSED=Battery,OPEN=No BAT				IN001,POL
	Input 2 Description	<=32 chars	"Fuse Alarm Major 48V"			IN002,DES
	Input 2 Type		"FAJ2"			IN002,TYP
		CLOSED=Battery,OPEN=No BAT				IN002,POL
	Input 3 Description	<=32 chars	"Auxiliary Major Alarm"			IN003,DES
	Input 3 Type		"АМЈ1"			IN003,TYP
		CLOSED=Battery,OPEN=No BAT				IN003,POL
	Input 4 Description	<=32 chars	"Open String"			IN004,DES
	Input 4 Type	CLOCED D II	"OSA1"			IN004,TYP
	Input 4 Active State	CLOSED=Battery OPEN=No BAT	"CLOSED"			IN004,POL
	Input 5 Description	<=32 chars	"Emergency Power Off"			IN005,DES
	Input 5 Type		"REMLVD"			IN005,TYP
	Input 5 Active State	CLOSED=Closed to RTN, OPEN=Open to RTN	"CLOSED"			IN005,POL
Built-in	Input 6 Description	<=32 chars	"Group Standby/PBT"			IN006,DES
Inputs	Input 6 Type		ш			IN006,TYP
	Input 6 Active State	CLOSED=Closed to RTN, OPEN=Open to RTN	"CLOSED"			IN006,POL
	Input 7 Description	<=32 chars	"Air Conditioner Fail"			IN007,DES
	Input 7 Type		"AUX1"			IN007,TYP
	Input 7 Active State	CLOSED=Closed to RTN, OPEN=Open to RTN	"CLOSED"			IN007,POL
	Input 8 Description	<=32 chars	"Door Open"			IN008,DES
	Input 8 Type		"AUX2"			IN008,TYP
	Input 8 Active State	CLOSED=Closed to RTN, OPEN=Open to RTN	"CLOSED"			IN008,POL
	Input 9 Description	<=32 chars	"High External Ambient"			IN009,DES
	Input 9 Type		"AUX3"			IN009,TYP
	Input 9 Active State	CLOSED=Closed to RTN, OPEN=Open to RTN	"CLOSED"			IN009,POL
	Input 10 Description	<=32 chars	"Low External Ambient"			IN010,DES
	Input 10 Type		"AUX4"			IN010,TYP
	Input 10 Active State	CLOSED=Closed to RTN, OPEN=Open to RTN	"CLOSED"			IN010,POL

Table D-1 Standard Configuration Item Defaults

				Factory	_	POWE
			Factory Default	24V Rectifier Default	48V Rectifier Default	
Category	Description	Range	Factory	Factory 24V	Factory 48V	obj,attr
	Auxiliary Alarm 1 Description	<=32 chars	"Air Conditioner Fail"			AUX1,DES
	Auxiliary Alarm 1 Front Panel Desc	<=24 chars	"Air Conditioner Fail"			AUX1,FDS
	Auxiliary Alarm 2 Description	<=32 chars	"Door Open"			AUX2,DES
	Auxiliary Alarm 2 Front Panel Desc	<=24 chars	"Door Open"			AUX2,FDS
	Auxiliary Alarm 3 Description	<=32 chars	"High External Ambient"			AUX3,DES
Auxiliary	Auxiliary Alarm 3 Front Panel Desc	<=24 chars	"High External Ambient"			AUX3,FDS
Alarms	Auxiliary Alarm 4 Description	<=32 chars	"Low External Ambient"			AUX4,DES
	Auxiliary Alarm 4 Front Panel Desc	<=24 chars	"Low External Ambient"			AUX4,FDS
	Auxiliary Alarm 5 Description	<=32 chars	"Fan Fail"			AUX5,DES
	Auxiliary Alarm 5 Front Panel Desc	<=24 chars	"Fan Fail"			AUX5,FDS
	Auxiliary Alarm 6 Description	<=32 chars	"Hydrogen Present"			AUX6,DES
	Auxiliary Alarm 6 Front Panel Desc	<=24 chars	"Hydrogen Present"			AUX6,FDS
	Ringer Output Voltage Set- Point	65-100 VAC	100			RP1,VSP
	Ringer Output Frequency	15-50Hz	20			RP1,FRQ
Ringers	Ringer DC Output Offset Feature	1=Enabled/0=Disabled	1			RP1,OFE
	Ringer Redundancy Loss Feature	1=Enabled/0=Disabled	1			RP1,RME
	Alarm Test Enable	1=Enabled 0=Disabled	1			AT1,LTE
	Duration of Each Relay Closure	5 to 300 sec	30			AT1,DUR
	PCR Relay Test Enable	1=Enabled 0=Disabled	1			AT1,PCR
	PMJ Relay Test Enable	1=Enabled 0=Disabled	1			AT1,PMJ
	PMN Relay Test Enable	1=Enabled 0=Disabled	1			AT1,PMN
Alarm	R1 Relay Test Enable	1=Enabled 0=Disabled	1			AT1,R1
Test	R2 Relay Test Enable	1=Enabled0=Disabled	1			AT1,R2
	R3 Relay Test Enable	1=Enabled 0=Disabled	1			AT1,R3
	R4 Relay Test Enable	1=Enabled 0=Disabled	1			AT1,R4
	R5 Relay Test Enable	1=Enabled 0=Disabled	1			AT1,R5
	R6 Relay Test Enable	1=Enabled 0=Disabled	1			AT1,R6
	R7 Relay Test Enable	1=Enabled 0=Disabled	10			AT1,R7
	Buzzer Test Interval	5-300sec	10			AT1,BZI
	Critical Alarm Cut-off Enable	1=Enabled 0=Disabled	1			ACO1,CAE
	Critical Alarm Cut-off Timeout	to 4 hours	1			ACO1,CTO
Alarm	Major Alarm Cut-off Enable	1=Enabled 0=Disabled	1			ACO1,JAE
Cut-Off	Major Alarm Cut-off Timeout	to 4 hours]	1		ACOLNIAE
	Minor Alarm Cut-off Enable	1=Enabled 0=Disabled	1	1		ACO1,NAE
	Minor Alarm Cut-off Timeout	1 to 72 hours	8			ACO1,NTO
	Local Buzzer Enable	1=Enabled 0=Disabled	1			ACO1,LBE
	Communication Port Type	LOCAL or MODEM	"LOCAL"	1		PS1,PTT
ication	Local Port Write Access	1=Enabled 0=Disabled	1	1		LP1,WRE
Ports	Local RS-232 baud rate	2400/4800/9600/Auto	"AUTO"			LP1,BDR

Table D-1 Standard Configuration Item Defaults

(F N bi L N bi L C M M N M	Jumber of Local RS-232 data bits ocal RS-232 parity Jumber of Local RS-232 stop bits ocal RS-232 Time-out ocal RS-232 Application Modem Port Write Access Modem baud rate Jumber Of Modem data bits Modem parity Jumber Of Modem stop bits Modem Time-out Modem initialization string	n,e,o 1,2 0-45 minutes TERMINAL, EVENT LOG 1=Enabled 0=Disabled 2400/4800/ 9600 7,8 n,e,o	Factory "NO" 8 N 1 5 "TERMINAL" 1 "2400" 8 N 1	Factory 24V	Factory 48V	obj,attr LP1,HSH LP1,DBT LP1,PRY LP1,SBT LP1,TMO LP1,APP MP1,WRE MP1,BDR MP1,DBT
(F N bi L N bi L C M M N M	Flow Control) Jumber of Local RS-232 data sits ocal RS-232 parity Jumber of Local RS-232 stop sits ocal RS-232 Time-out ocal RS-232 Application Modem Port Write Access Modem baud rate Jumber Of Modem data bits Modem parity Jumber Of Modem stop bits Modem Time-out Modem initialization string	7,8 n,e,o 1,2 0-45 minutes TERMINAL, EVENT LOG 1=Enabled 0=Disabled 2400/4800/ 9600 7,8 n,e,o 1,2	8 N 1 5 "TERMINAL" 1 "2400" 8 N			LP1,DBT LP1,PRY LP1,SBT LP1,TMO LP1,APP MP1,WRE MP1,BDR
M M M M M M M	ocal RS-232 parity Jumber of Local RS-232 stop oits ocal RS-232 Time-out ocal RS-232 Application Modem Port Write Access Modem baud rate Jumber Of Modem data bits Modem parity Jumber Of Modem stop bits Modem Time-out Modem initialization string	n,e,o 1,2 0-45 minutes TERMINAL, EVENT LOG 1=Enabled 0=Disabled 2400/4800/ 9600 7,8 n,e,o 1,2	N 1 5 "TERMINAL" 1 "2400" 8 N			LP1,PRY LP1,SBT LP1,TMO LP1,APP MP1,WRE MP1,BDR
M Bi Lc M M N M M	Jumber of Local RS-232 stop bits ocal RS-232 Time-out ocal RS-232 Application Modem Port Write Access Modem baud rate Jumber Of Modem data bits Modem parity Jumber Of Modem stop bits Modem Time-out Modem initialization string	1,2 0-45 minutes TERMINAL, EVENT LOG 1=Enabled 0=Disabled 2400/4800/ 9600 7,8 n,e,o 1,2	1 5 "TERMINAL" 1 "2400" 8 N			LP1,SBT LP1,TMO LP1,APP MP1,WRE MP1,BDR
bi Lc Lc M M N M M	ocal RS-232 Time-out ocal RS-232 Application Modem Port Write Access Modem baud rate Jumber Of Modem data bits Modem parity Jumber Of Modem stop bits Modem Time-out Modem initialization string	0-45 minutes TERMINAL, EVENT LOG 1=Enabled 0=Disabled 2400/4800/ 9600 7,8 n,e,o 1,2	5 "TERMINAL" 1 "2400" 8 N			LP1,TMO LP1,APP MP1,WRE MP1,BDR
M M M M M M M M M M M M M M M M M M M	ocal RS-232 Application Modem Port Write Access Modem baud rate Jumber Of Modem data bits Modem parity Jumber Of Modem stop bits Modem Time-out Modem initialization string	TERMINAL, EVENT LOG 1=Enabled 0=Disabled 2400/4800/ 9600 7,8 n,e,o 1,2	"TERMINAL" 1 "2400" 8 N			LP1,APP MP1,WRE MP1,BDR
M N N N N N N N N N N N N N N N N N N N	Modem Port Write Access Modem baud rate Jumber Of Modem data bits Modem parity Jumber Of Modem stop bits Modem Time-out Modem initialization string	1=Enabled 0=Disabled 2400/4800/ 9600 7,8 n,e,o 1,2	1 "2400" 8 N			MP1,WRE
M N M N M M	Modem Port Write Access Modem baud rate Jumber Of Modem data bits Modem parity Jumber Of Modem stop bits Modem Time-out Modem initialization string	0=Disabled 2400/4800/ 9600 7,8 n,e,o 1,2	"2400" 8 N			MP1,BDR
N M N M	Iumber Of Modem data bits Modem parity Iumber Of Modem stop bits Modem Time-out Modem initialization string	7,8 n,e,o 1,2	8 N			
M N M	Modem parity Jumber Of Modem stop bits Modem Time-out Modem initialization string	n,e,o 1,2	N			MP1,DBT
N M M	Number Of Modem stop bits Modem Time-out Modem initialization string	1,2				
M	Nodem Time-out Nodem initialization string		1 1			MP1,PRY
М	Modem initialization string	0-45 minutes	•			MP1,SBT
	_		5			MP1,TMO
M	Andoro purobar of ripas	≤ 20 Characters	"AT&FEV&C1S0=0H"			MP1,INS
	Modem number of rings before answering	1 to 9	1			MP1,NRG
	Modem handshaking (Flow Control)	No/SW/HW	"NO"			мрī,HSH
Network C)H(`D	0=static 1=client 2=server	1			NET1,DHCP
Port Ti	imeout	0 to 45 minutes	10			NET1,TMO
N	letwork Port Write Access	1=Enabled 0=Disabled	1			NET1,WRE
Al	larm Delay	0 to 9 minutes	0			SDA,DLY
Ctandard N	lotify On Occur	1=Enabled 0=Disabled	0			SDA,NOO
Standard N	lotify On Retire	1=Enabled 0=Disabled	0			SDA,NOR
N	ŭ	1=Enabled 0=Disabled	0			SDA,NAG
	lotify Destination		1111			SDA,DST
—	Ţ	0 to 9 minutes	0			THA,DLY
_	_	1=Enabled 0=Disabled	0			THA,NOO
l —	lotify On Retire	1=Enabled 0=Disabled	0			THA,NOR
	lag On Occur	1=Enabled 0=Disabled	0			THA,NAG
	lotify Destination		1111			THA,DST
I	-	0 to 9 minutes	0			DTA,DLY
l —	lotify On Occur	1=Enabled 0=Disabled	0			DTA,NOO
	lotify On Retire	1=Enabled 0=Disabled	0			DTA,NOR
	lag On Occur	1=Enabled 0=Disabled	0			DTA,NAG
	lotify Destination	IF to CO point to a				DTA,DST
	_	15 to 60 minutes	15	-		CM1,NGI
		data or pager	"DATA"	1		COP,TYP
Call-Out	Call-Out Baudrato	up to 25 Characters 300, 1200, 2400,				COP,PHN
		4800, 9600, 19200 7 or 8	2400 8			COP,BDR COP,DBT

Table D-1 Standard Configuration Item Defaults

			Factory Default	Factory 24V Rectifier Default	Factory 48V Rectifier Default	
Category	Description	Range	Factory	Factory 24V	Factory 48V	obj,attr
	Call-Out Parity	n,e,o	N			COP,PRY
	Call-Out Stop Bits	1 or 2	1			COP,SBT
	Pager ID Delay	0 to 9 seconds	0			COP,DLY
	Pager ID	up to 25 Characters	1111			COP,PGR
	Pager Message	up to 25 Characters	1111			COP,MSG
	Phone Number	up to 25 Characters	1111			PSO,PHN
	Baudrate	300, 1200, 2400, 4800, 9600, 19200	2400			PSO,BDR
	Data Bits	7 or 8	8			PSO,DBT
	Parity	n,e,o	N			PSO,PRY
	Stop Bits	1 or 2	1			PSO,SBT
	Interval	Sunday-Saturday, Daily, Monthly, Quarterly, Never	"Never"			PO1,INT
	Time	hh:mm	6:00			PSO,TIM
Periodic	Command Line 1	<=40 characters	6.00			
Dial-Out	Command Line 1	<=40 characters	1111			PSO,CL03
		<=40 characters	1111	+		PSO,CL02
	Command Line 3		1111			PSO,CL03
	Command Line 4	<=40 characters				PSO,CL04
	Command Line 5	<=40 characters	""			PSO,CL05
	Command Line 6	<=40 characters				PSO,CL06
	Command Line 7	<=40 characters	1111			PSO,CL07
	Command Line 8	<=40 characters	1111			PSO,CL08
	Command Line 9	<=40 characters	1111			PSO,CL09
	Command Line 10	<=40 characters	1111			PSO,CL10
Alarm Email	IP Address		1111			COE,ADR
Notification	Email Type	normal or pager	"NORMAL"			COE,TYP
	Call-Back Security Enable	1=Enabled 0=Disabled	0			CBS,STT
	Phone Number 1	up to 25 Characters	1111			CBS,PH1
	Baudrate 1	300, 1200, 2400, 4800, 9600, 19200	2400			CBS,BR1
	Phone Number 2	up to 25 Characters	ш			CBS,PH2
	Baudrate 2	300, 1200, 2400, 4800, 9600, 19200	2400			CBS,BR2
Call-Back	Phone Number 3	up to 25 Characters	1111			CBS,PH3
Security	Baudrate 3	300, 1200, 2400, 4800, 9600, 19200	2400			CBS,BR3
	Phone Number 4	up to 25 Characters	1111			CBS,PH4
	Baudrate 4	300, 1200, 2400, 4800, 9600, 19200	2400			CBS,BR4
	Phone Number 5	up to 25 Characters	ш			CBS,PH5
	Baudrate 5	300, 1200, 2400, 4800, 9600, 19200	2400			CBS,BR5
SNMP Destination	IP Address		"0.0.0.0"			SND,IP

Table D-1 Standard Configuration Item Defaults

			Factory Default	Factory 24V Rectifier Default	Factory 48V Rectifier Default	
Category	Description	Range	Factory	Factory 24V	Factory 48V	obj,attr
	Activate User Enable	1=Enabled 0=Disabled	0			TLM,AUE
	CTS Detection Enable	1=Enabled 0=Disabled	0			TLM,CTS
TL1 Manager	DSR Detection Enable	1=Enabled 0=Disabled	0			TLM,DSR
	Timeout	0 to 60 minutes	0			TLM,TMO
	Port	0 to 65535	2020			TLM,PRT

Table D-1 Standard Configuration Item Defaults

Category	Battery Related Items Defaul Description	Range	Valve-Reg	Flooded	Li_ELiTE	NiCd	Li-LMP	obj,attr
	Float Doctifior High Voltage	25 to 30V	29.25	29.25	29.25	29.25	29.25	GM1,FSD
	Float High Voltage Major Alarm	25.74 to 31.75V	28.24	28.24	28.24	28.24	28.24	HVA1,FTH
Voltage	Float High Voltage Minor Alarm	24.75 to 29.75V	27.74	27.74	27.74	27.74	27.74	HFV1,FTH
Settings	Float Voltage	21 to 28V	27.24	26.04	27.24	27.20	27.24	GM1,FSP
	Float Battery on Discharge Alarm	23 to 28V	25.54	25.00	26.50	25.54	25.54	BDA1,FTH
	Very Low Voltage Alarm	20 to 25.5V	23.00	23.00	23.00	23.00	23.00	VLA1,THR
	Rectifier On Threshold	20 to 25V	22.00	22.00	22.00	22.00	22.00	DC1,ROT
Battery	LV Battery Disconnect	1=Enabled 0=Disabled	1	1	0	1	0	CN1,ENA
Disconnect	LV Battery Disconnect Voltage	19.5 to 25V	21.00	21.00	21.00	21.00	21.00	CN1,DTH
	LV Battery Reconnect Voltage	19.5 to 25V	22.20	22.20	22.20	22.20	22.20	CN1,RTH
	Cells Per String	0-75	12	12	12	12	12	DC1,CPS
	String End Of Discharge Voltage		21.00	21.00	21.00	21.00	21.00	BR1,CEV
	Recharge Current Limit Feature	1=Enabled 0=Disabled	0	0	0	0	0	BR1,CLE
Batteries	Recharge Current Limit Value		50	50	25	25	25	BR1,CLT
1	Boost Maximum Duration	1 to 80 Hours	1	1	1	1	7	BS1,TMD
	Voltage Imbalance Detect	1.5V to 3.0V	1.7	1.7	1.7	2.0	1.7	BR1,SCV
	High Temperature Disconnect	30 to 90°C	75	75	75	75	75	BR1,TTH
	High Battery Temperature	30 to 85°C	55	55	55	55	85	BTHA1,THF
	Slope Thermal Compensation (STC)	1=Enabled 0=Disabled	1	0	0	0	0	SC1,STT
	High Temperature Voltage Step Down	45 to 85°C	75	75	75	75	75	SC1,SPT
	High Temperature Compensation Stop	30 to 55°C	55	55	55	55	55	SC1,UTT
3 1	High Temperature Decrease Rate	1-10mV/°C per cell	3	3	3	3	3	SC1,USP
	Nominal Temperature (No Temp Comp)	15 to 30 °C	25	25	25	25	25	SC1,NTT
	Low Temperature Compensation Feature	1=Enabled 0=Disabled	0	0	0	0	0	SC1,RVE
	Low Temperature Compensation Stop	-5 to 20°C	0	0	0	0	0	SC1,LTT
	Low Temperature Decrease Rate	1-10mV/°C per cell	3	3	3	3	3	SC1,LSP
3	Timed Test Alarm Voltage Threshold	21 to 27V	22.00	22.00	23.00	22.00	22.00	BR1,TEV
	Rectifier Voltage During Battery Test	21 to 26V	21.00	21.00	21.00	21.00	21.00	BR1,BTV
	Shutdown	26 to 30V	29.25	29.25	29.25	29.25	29.25	GM1,BSD
	Boost High Voltage Major Alarm	25.75 to 31.75V	28.24	29.00	28.24	28.24	28.24	HVA1,BTH
-	Boost High Voltage Minor Alarm	25.75 to 31.75V		28.00	27.74	27.74	27.74	HFV1,BTH
	Boost Voltage	22 to 30V	27.24	26.04	27.24	27.20	27.24	GM1,BSP
	Boost Battery on Discharge Alarm	23 to 28V	25.54	25.00	26.50	25.54	25.54	BDA1,BTH

Category	Description	Range	Valve-Reg	Flooded	Li_ELiTE	NiCd	Li-LMP	POWE obj,attr
	Rectifier Float Selective High	-50 to -60V	58.50	58.50	58.50	58.50	58.50	GM1,FSD
	Voltage Shutdown	-30 to -60 v	30.30	30.30	36.30	36.30	36.30	GMI,F3D
	High Float Voltage Major Alarm	-50 to -60V	56.00	57.00	57.00	57.00	57.00	HVA1,FTH
Voltage	High Float Voltage Minor Alarm	-50 to -60V	55.50	56.00	56.00	56.00	56.00	HFV1,FTH
Settings	Rectifier/System Float Voltage	-42 to -56.5V	54.00	52.08	54.48	54.40	54.48	GM1,FSP
	Battery on Discharge Float Alarm	-46 to -55V	53.00	50.00	53.00	51.00	51.00	BDA1,FTH
	Very Low Float Voltage Alarm	-40 to -51V	46.00	46.00	46.00	46.00	46.00	VLA1,THR
	Rectifier On Threshold	-40 to -51V	44.00	44.00	44.00	44.00	44.00	DC1,ROT
	LV Battery Disconnect	1=Enabled 0=Disabled	1	1	0	1	0	CN1,ENA
Battery Disconnect	LV Battery Disconnect Voltage	-39.0 to -50V	42.00	42.00	42.00	42.00	42.00	CN1,DTH
	LV Battery Reconnect Voltage	-39.0 to -55V	48.00	48.00	48.00	48.00	48.00	CN1,RTH
	Cells Per String	0 to 75	24	24	24	24	24	DC1,CPS
	String End Of Discharge Voltage	-40.25 to - 48.75V	42.00	42.00	42.00	42.00	42.00	BR1,CEV
	Recharge Current Limit Feature	1=Enabled 0=Disabled	0	0	0	0	0	BR1,CLE
Batteries	Recharge Current Limit Value		50	50	25	25	25	BR1,CLT
	Boost Maximum Duration	1 to 80 Hours	1	1	1	1	1	BS1,TMD
	Voltage Imbalance Detect	1.5V to 3.0V	1.7	1.7	1.7	2.0	1.7	BR1,SCV
	High Temperature Battery Disconnect	30 to 90°C	75	75	75	75	75	BR1,TTH
	High Battery Temperature	30 to 85°C	55	55	55	55	85	BTHA1,THR
	Slope Thermal Compensation (STC)	1=Enabled 0=Disabled	1	0	0	0	0	SC1,STT
	High Temperature Voltage Step Down	45 to 85°C	75	75	75	75	75	SC1,SPT
	High Temperature Compensation Stop	30 to 55°C	55	55	55	55	55	SC1,UTT
	High Temperature Decrease Rate	1-10mV/°C per cell	3	3	3	3	3	SC1,USP
Compensation	Nominal Temperature (No Temp Comp)	15 to 30 °C	25	25	25	25	25	SC1,NTT
	Low Temperature Compensation Feature	1=Enabled 0=Disabled	0	0	0	0	0	SC1,RVE
	Low Temperature Compensation Stop	-5 to 20°C	0	0	0	0	0	SC1,LTT
	Low Temperature Decrease Rate	1-10mV/°C per cell	3	3	3	3	3	SC1,LSP
Battery	Timed Test Alarm Voltage Threshold	-36 to -48V	44.00	44.00	46.00	44.00	44.00	BR1,TEV
Discharge Test	Rectifier Voltage During Battery Test	-42.00 to - 52V	42.00	42.00	42.00	42.00	42.00	BR1,BTV
	Boost Rectifier High Voltage Shutdown	-52 to -60V	58.50	58.50	58.50	58.50	58.50	GM1,BSD
	Boost High Voltage Major Alarm	-50 to -60V	57.0	58.5	57.0	57.0	57.0	HVA1,BTH
Battery Boost	Boost High Voltage Minor Alarm	-50 to -60V	56.0	58.0	56.0	56.0	56.0	HFV1,BTH
	Boost Voltage	-48 to -58V	55.2	57.0	54.5	54.4	54.5	GM1,BSP
	Boost Battery on Discharge	-46 to -55V	51.0	50.0	53.0	51.0	51.0	BDA1,BTH

Appendix E: Alarms and Relays

Alarm Relays

The control unit is provided with ten alarm relays; seven to provide the actual alarm condition, and three to provide the severity associated with the alarm. The severity relays transmit Power Critical (PCR), Power Major (PMJ), or Power Minor (PMN). Each alarm is factory assigned a severity based on industry practices. However, they may be reassigned to PCR, MAJ, MIN, or RO (Record Only). An alarm condition with the RO severity results in the system controller transmitting the alarm without the severity but is stored in the history log. PCR, PMJ nor PMN are transmitted with the alarm.

The seven selectable alarm relays are called User Alarm Relay 1 (R1) through User Alarm Relay 7 (R7). Relays are user definable in that the user may assign any combination of alarms from a given set of alarms. The following table shows which alarms may be assigned along with their factory default settings.

Alarms

	Se		/ - Rela isplay		t		Ad	ditio	onal	Rela	ay		LED		
Description	CRIT	РМЈ	PMN	WR N	RO	RI	R2	R3	R4	R5	R6	R7	AC	DC BD	Object ID
AC Fail			MIN						R4					AC	ACF1
Alarm Cut-off Active					RO										AAC1
Alarm Test Aborted					RO										ATB1
Alarm Test Active					RO										ATA1
Auxiliary 1		MAJ													AUX1
Auxiliary 2		MAJ													AUX2
Auxiliary 3		MAJ													AUX3
Auxiliary 4		MAJ													AUX4
Auxiliary 5		MAJ													AUX5
Auxiliary 6		MAJ													AUX6
Auxiliary 7		MAJ													AUX7
Auxiliary 8		MAJ													AUX8
Auxiliary 9		MAJ													AUX9
Auxiliary 10		MAJ													AUX10
Auxiliary 11		MAJ													AUX11
Auxiliary 12		MAJ													AUX12
Auxiliary Major Alarm		MAJ													АМЛ
Battery Test Active					RO									BD	BTA1
Battery on Discharge (Float and Boost)		MAJ				R1								BD	BDA1
Battery Thermal alarm			MIN												BTHA1
Check Battery			MIN												BFA1
Clock Battery Low			MIN												BBL1
Clock Changed					RO										CLC1
Communication Loss Major		MAJ													MCM1
Communication Loss Minor			MIN												CMA1
Configuration Changed					RO									<u> </u>	CCH1

Table E-1 Alarms, Alarm Relays and LEDs Assignments - Pulsar Display

	Se		/ - Rel isplay	ay and /			Ac	lditi	onal	Rel	ay		LED	
Description	CRIT				RO	RI	R2	R3	R4	R5	R6	R7	AC DC B	D Object ID
Controller Ambient Temperature			MIN											AMTH1
High '														
Controller Ambient Temperature Low			MIN											AMTL1
Controller Fail (Not user mappable)		Х	Х		Х									
Converter Distribution Fuse		MAJ											DC	CDFA1
Converter Fail			MIN							R5				CFA1
Converter Fan Major		MAJ								R5				CFJ1
Converter Fan Minor			MIN							R5				CFN1
Converter Low Voltage	CRIT						R2							CVLA1
Converter High Voltage Major		MAJ										R7		CHVA1
Converter High Voltage Minor			MIN									R7		CHFV1
Converter ID Conflict		MAJ												CDID1
Converter Redundancy Loss			MIN							R5				CRL1
Defective Temp Probe			MIN											TPA1
Emergency Power Off (EPO)		MAJ												EPO1
Energy Management Disabled				WRN										EMD1
Excessive Login Attempts				WRN										EXL1
External Password Reset				WRN										EPR1
Fuse Major 24		MAJ						R3					DC	FAJ1
Fuse Major 48		MAJ						R3					DC	FAJ2
Fuse Minor 24			MIN					R3					DC	FAN1
Fuse Minor 48			MIN					R3					DC	FAN2
Generator Requires Maintenance		MAJ												GNM1
Generator Running			MIN											GNR1
High Voltage Major		MAJ										R7		HVA1
High Voltage Minor			MIN									R7		HFV1
History Cleared					RO									HCL1
ID Conflict		MAJ												DID1
ID Not Configured		MAJ												ZID1
Imminent LVBD Shutdown		MAJ											DC	ISD1
Incompatible Converter			MIN											ICC1
Incompatible Rectifier			MIN											ICR1
Low Battery Temperature					RO									BTLA1
LV Disconnect Contactor 1 Fail		MAJ												CNF1
LV Disconnect Contactor 1 Open		MAJ											DC	CNO1
LV Disconnect Contactor 2 Fail		MAJ												CNF2
LV Disconnect Contactor 2 Open		MAJ												CNO2
LV Disconnect Contactor 3 Fail		MAJ						Ì						CNF3
LV Disconnect Contactor 3 Open		MAJ												CNO3
LV Disconnect Contactor 4 Fail		MAJ												CNF4
LV Disconnect Contactor 4 Open		MAJ												CNO4
Manual Off		1	MIN		1					R5				MAN1
Multiple AC Fail		MAJ			1						R6		AC	MACF1
Multiple Converter Fail		MAJ									R6			CMFA1
Multiple Manual Off		MAJ									R6			MMAN1
Multiple Rectifier Fail		MAJ									R6			MFA1
No Call-Out Response				WRN										COR1

Table E-1 Alarms, Alarm Relays and LEDs Assignments – Pulsar Display

	Se		y - Re Displa	lay and	ł		Ac	diti	ona	l Rel	ay		LED	
Description	CRIT	PMJ	PMN	WRN	RO	RI	R2	R3	R4	R5	R6	R7	AC DC BD	Object ID
No Dial-Out Response				WRN										POR1
Open String		MAJ											DC	OSA1
Password At Default					RO									PFD1
Processor Halt					RO									PHT1
Program Line Invalid		MAJ												PGI1
Queue Overflow				WRN										COF1
Real-Time Reserve Time Low					RO									RRTLI
Rectifier Current Limit					RO									CLM1
Rectifier Fail			MIN							R5				RFA1
Rectifier Fan Fail			MIN							R5				RFN1
Rectifier Redundancy Loss			MIN							R5				RLS1
Reserve Time Low					RO									RTLI
Ringer External Failure Major		MAJ												RPXJ1
Ringer External Failure Minor			MIN											RPXN1
Ringer Fail Major		MAJ												RPFJ1
Ringer Fail Minor			MIN											RF1
Ringer Fan Fail			MIN											RPFF1
Ringer ID Conflict		MAJ												RCDP1
Ringer Redundancy Loss			MIN											RPRL1
Self Test Failed			MIN											STF1
Sense Fuse			MIN											VSF1
Thermal Probe Failure			MIN											TPA1
Unconfigured Alarm Destination				WRN										NNC1
Un-powered Controller (Not		X	X		Х	Х	Х	Х				X		
configurable)														
Very High Battery Temperature					RO									BTVH1
Very Low Battery Temperature					RO									BTVL1
Very Low Voltage	CRIT						R2							VLA1
Voltage Duplicate ID		MAJ												MDP1
Voltage ID Not Configured		MAJ												MZD1
Voltage Imbalance Detect			MIN											SCD1
Voltage Monitoring Module Failure			MIN											VMF1

Table E-1 Alarms, Alarm Relays and LEDs Assignments – Pulsar Display

	Severity - Relay and Display Additional Relay L									LED				
Description	CRIT	PMJ	PMN	WRN	RO	Rī	R2	R3	R4	R5	R6	R7		Object ID
AC Fail			PMN			R1							ACF	ACF1
Alarm Cut-off Active					RO								ACO	AAC1
Alarm Test Aborted					RO									ATB1
Alarm Test Active					RO									ATA1
Auxiliary 1		MAJ												AUX1
Auxiliary 2		MAJ												AUX2
Auxiliary 3		MAJ												AUX3
Auxiliary 4		MAJ												AUX4
Auxiliary 5		MAJ												AUX5

Table E-2 Alarms, Alarm Relays and LEDs Assignments – Phoenix Display

	S		y - Rel Display	ay and			Ad	lditio	onal Re	lay		LED	
Description	CDIT				PΩ	DΊ	D2	D7	R4 R5	D6	D7		Object ID
Auxiliary 6	CKII	MAJ	- MIN		K C		ΝZ	N3	N-I NO	, KO	K /		AUX6
Auxiliary 7		MAJ											AUX7
Auxiliary 7 Auxiliary 8		MAJ											AUX8
Auxiliary 6 Auxiliary 9		MAJ								-			AUX9
Auxiliary 10		MAJ								-			AUX10
Auxiliary 10 Auxiliary 11		MAJ								-			AUX11
Auxiliary 11 Auxiliary 12		MAJ											AUX11
Auxiliary 12 Auxiliary Major Alarm		MAJ						R3		-		DEA	AUXI2 AMJ1
Battery Test Active		MAJ				 	R2	K3				DFA	
-					RO		RZ_					BOD	BTA1
Battery on Discharge (Float and Boost)		MAJ				I	R2					BOD	BDA1
Check Battery			MIN										BFA1
Real Time Clock Battery Low			MIN										BBL1
Clock Changed					RO								CLC1
Communication Loss Major		MAJ											MCM1
Communication Loss Minor			MIN										CMAI
Configuration Changed					RO								CCH1
Controller Ambient Temperature High			MIN									TEMP	AMTH1
Controller Ambient Temperature Low			MIN									TEMP	AMTL1
Controller Fail (Not user mappable)		Х	Х		Х								
Converter Distribution Fuse		MAJ						R3				DFA	CDFA1
Converter Fail		MAJ									R7	CFA	CFA1
Converter Fan Minor			MIN								R7	CFA	CFN1
Converter Low Voltage	CRIT										R7	CFA	CVLA1
Converter High Voltage Major		MAJ									R7	CFA	CHVAI
Converter High Voltage Minor			MIN								R7	CFA	CHFV1
Converter ID Conflict		MAJ									R7		CDID1
Converter Redundancy Loss		MAJ									R7	CFA	CRL1
Defective Temp Probe			MIN										TPA1
Emergency Power Off (EPO)		MAJ											EPO1
Energy Management Disabled				WRN									EMD1
Excessive Login Attempts				WRN									EXL1
External Password Reset				WRN									EPR1
Fuse Major 24		MAJ						R3				DFA	FAJ1
Fuse Major 48		MAJ						R3				DFA	FAJ2
Fuse Minor 24			MIN					R3				DFA	FAN1
Fuse Minor 48			MIN					R3			1	DFA	FAN2
Generator Requires Maintenance		MAJ									1		GNM1
Generator Running			MIN										GNR1
High Battery Thermal alarm			MIN								1	BAT	BTHA1
High Voltage Major		MAJ							R4	1	1	HVSD	HVA1
High Voltage Minor			MIN						R4	1	1	HVA	HFV1
History Cleared					RO					1	1		HCL1
ID Conflict		MAJ			1								DIDI
ID Not Configured		MAJ											ZID1
Imminent LVBD Shutdown		MAJ								1			ISD1

Table E-2 Alarms, Alarm Relays and LEDs Assignments – Phoenix Display

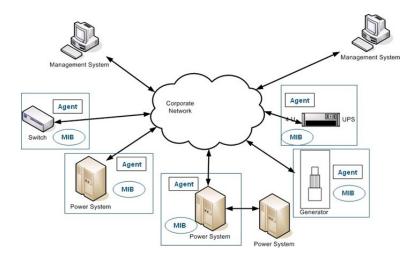
			ity - Re I Displa				Ac	dditi	ona	l Re	lay		LED	
Description	CRIT	РМЈ	PMN	WRN	RO	RI	R2	R3	R4	R5	R6	R7		Object ID
Incompatible Converter			MIN										CFA	ICC1
Incompatible Rectifier			MIN							R5			RFA	ICR1
Low Battery Temperature					RO									BTLA1
LV Disconnect Contactor 1 Fail	CRIT	MAJ											LVD	CNF1
LV Disconnect Contactor 1 Open	CRIT	MAJ											LVD	CNO1
LV Disconnect Contactor 2 Fail	CRIT												LVD	CNF2
LV Disconnect Contactor 2 Open	CRIT												LVD	CNO2
LV Disconnect Contactor 3 Fail		MAJ											LVD	CNF3
LV Disconnect Contactor 3 Open		MAJ											LVD	CNO3
LV Disconnect Contactor 4 Fail		MAJ											LVD	CNF4
LV Disconnect Contactor 4 Open		MAJ											LVD	CNO4
Manual Off			MIN											MAN1
Multiple AC Fail		MAJ	1			R1	1						ACF	MACF1
Multiple Converter Fail		МАЈ										R7	CFA	CMFA1
Multiple Manual Off		MAJ												MMAN1
Multiple Rectifier Fail		MAJ									R6		RFAM	MFA1
No Call-Out Response		,		WRN							1			COR1
No Dial-Out Response				WRN										POR1
Open String		MAJ						R3					DFA	OSA1
Password At Default		,			RO								2.7.	PFD1
Processor Halt					RO									PHT1
Program Line Invalid		MAJ												PGI1
Queue Overflow				WRN										COF1
Real-Time Reserve Time Low					RO									RRTL1
Rectifier Current Limit					RO									CLM1
Rectifier Fail		MAJ								R5			RFA	RFA1
Rectifier Fan Fail			MIN							R5			RFA	RFN1
Rectifier Redundancy Loss			MIN										LMR	RLS1
Reserve Time Low					RO								1	RTL1
Ringer External Failure Major		MAJ												RPXJ1
Ringer External Failure Minor			MIN											RPXN1
Ringer Fail Major		MAJ												RPFJ1
Ringer Fail Minor			MIN											RF1
Ringer Fan Fail			MIN											RPFF1
Ringer ID Conflict		MAJ	1											RCDP1
Ringer Redundancy Loss		1	MIN											RPRLI
Self Test Failed			MIN										1	STF1
Sense Fuse			MIN										1	VSF1
Unconfigured Alarm Destination			1	WRN										NNC1
Un-powered Controller (Not configurable)	х	Х	Х		Х	х	х	х	х	х	х	Х		
Very High Battery Temperature		MAJ											BAT	BTVH1
Very Low Battery Temperature					RO								1	BTVL1
Very Low Voltage		MAJ											BOD, VLV	VLA1
Voltage Duplicate ID		MAJ		+			+	1		1	1		V V	MDP1

Table E-2 Alarms, Alarm Relays and LEDs Assignments – Phoenix Display

	Severity - Relay and Display					Additional Relay							LED	
Description	CRIT	PMJ	PMN	WRN	RO	R1	R2	R3	R4	R5	R6	R7		Object ID
Voltage ID Not Configured		MAJ												MZD1
Voltage Imbalance Detect			MIN											SCD1
Voltage Monitoring Module Failure			MIN											VMF1

Table E-2 Alarms, Alarm Relays and LEDs Assignments – Phoenix Display

	Sever	Severity - Relay and Display						diti	onal	LED				
Description	CRIT	PMJ	PMN	WRN	RO	RI	R2	R3	R4	R5	R6	R7		Object ID
Total Current Alarm Plant			MIN										TCA	
Total Current Alarm Converter			MIN										TCA	
Distribution Current Side A			MIN										DCA	
Distribution Current Side B			MIN										DCA	


Table E-3 Alarms, Alarm Relays and LEDs Assignments – Phoenix Display – Default UDEs

Appendix F: SNMP

SNMP Overview

In addition to supporting the basic protocols (Telnet, HTTP, FTP, and SMTP) on TCP/IP, the Pulsar Plus family of controllers support conveying system alarm and control information to a Network Operation Center (NOC) using the Simple Network Management Protocol (SNMP). SNMP is the most popular protocol for managing diverse networks. Using SNMP to access management information data and retrieve alarm information can allow company personnel to more easily manage system performance and remotely find and solve system problems. A controller serves as an SNMP Agent. A SNMP Host system is used to communicate to a multitude of SNMP Agents. A number of SNMP Host packages are available such as HP OpenView, Castle Rock Computing SNMPc, IBM NetView, Lucent OneVision, and Sun Micro's NetManager. OmniOn Power Systems also provides a SNMP Host focused on the needs of the power engineer with its Manager product.

Simple Network Management Protocol is an application-layer protocol designed to facilitate the exchange of management information between network devices. There have been several releases of SNMP in its history and the controller implements an SNMPv2C Agent. SNMPv2C is backwards compatible with SNMPv1.

A key part of the SNMP protocol is the detailed Management Information

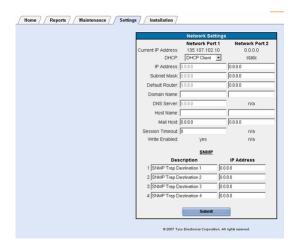
Base (MIB) that describes all Agent variables that can be accessed. For the controller, this includes all the objects controlled or monitored in the system such as: rectifiers, converters, distribution monitoring cards, alarms, etc. Essentially, all elements described in the T1.317 protocol (see Appendix B) are available in SNMP. The MIB will be needed by any SNMP Host that wishes to communicate with the controller and can be retrieved at the "Design Tools and Download" link located at omnionpower.com

SNMP Operations

Interactions between the SNMP Host and the SNMP Agent can be any of four different types of commands: Reads, Writes, Traversal operations, and Traps. SNMP utilizes six operations to respond to the various SNMP Hosts: Get, GetNext, GetBulk, Set, Trap, and Inform. The controller implements the Get, GetNext, Set, and Trap operations.

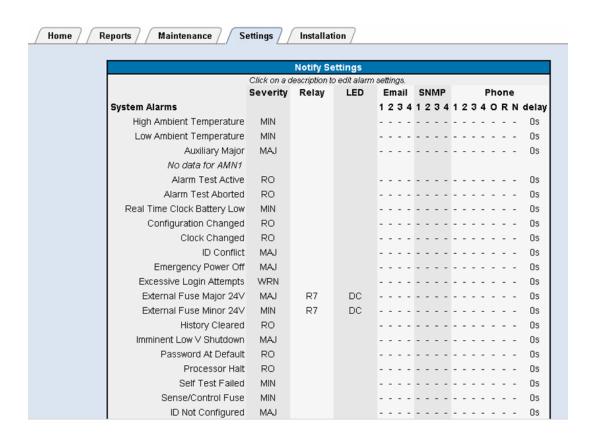
Get - Allows the SNMP Host to retrieve a value from the SNMP Agent.

GetNext - Allows the SNMP Host to retrieve the next value in sequence from a table or list of variables in the SNMP Agent.


Set - Allows the SNMP Host to set a value within the SNMP Agent.

Trap - Used by the SNMP Agent (the power system controller) to asynchronously inform the SNMP Host of an event such as an alarm notification. Unlike the other operations, the trap does not require a response from the host. The SNMP Agent must be configured with appropriate addresses of the SNMP Host.

SNMP Configuration


SNMP functionality is always available. No enabling or disabling of the feature is required. Appropriate trap destinations and assignments of specific alarms must be configured for SNMP to properly send out Traps. Users can configure these SNMP parameters from the browser interface. They may also be configured from a Telnet command line interface.

Configuration of the IP addresses for Trap destinations is performed under the "Network" link under the main configuration "Settings" tab. The controller supports up to four different destinations for SNMP messages. Each destination (1 through 4) is configured with an IP address. The sample screen for this configuration follows.

Individual alarms or events are assigned as Traps to one of the four specific SNMP destinations. Assignment of the alarm and events is performed under the "Alarm Notification" link under the main configuration "Settings" tab. The sample screen for this configuration follows.

Community Strings

SNMP Community Strings can serve as passwords or user IDs for network elements. The community name assigns an access environment for a set of SNMP Hosts or Agents using that community name. An SNMP Host or Agent within the community can be said to exist within the same administrative domain. Because devices that do not know the proper community name are precluded from SNMP operations, network management personnel can use the community name as a weak form of authentication. Community strings can be either read only or read/write. Having this capability provides further security by restricting the ability to alter the configuration of the managed device.

Presently the controller defaults the value of the community string to "public" with read/write access. These SNMP parameters are not configurable at this time.

Appendix G: Secure Protocols

Overview

Secured protocols are only supported by controllers identified with the Secured Protocols "S" in their model number - see Table 1.

Secured protocols include support for the SNMPv3, IPv6, HTTPS/SSL, SSH, and SFTP protocols.

Configuration

Reboot Required

Configuration changes involving IP addresses and protocol operational mode variable items require a reboot. Allow the controller to run for at least 2 minutes following a saved change to ensure the change has been saved to non-volatile memory before powering the unit down or any rebooting operation.

Security

Security related settings are found in Settings ► Communication ► Security. Administrative level log-in is required to edit these settings. The network related items are:

- Port behavior on failed login attempts (number of failed attempts allowed value of 3-10 attempts, time to lock the port value 0 to 5 minutes 1 minute increments).
- Password rules to encourage the use of strong passwords. These include minimum password length (3 to 15 characters) and requirements for the inclusion of different types of characters (≥ one upper case, ≥ one lower case, ≥ one number, and ≥ one special character).
- Individual protocol (network ports) enables to allow the blocking of non-secure protocols

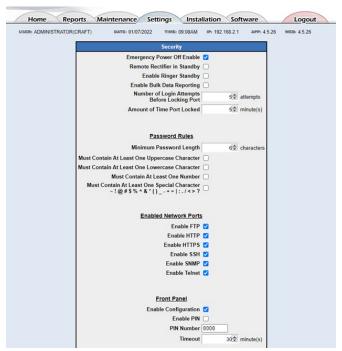


Figure G-1: Security Configuration

Internet Protocols (IPv4 And IPv6)

Configuration settings for IPv4 and IPv6 are found on Network Settings: Settings ©Network Settings. The screen provides for IPv6 and IPv4 related settings.

Figure G-2 shows Static DHCP selected in the IPv4 section of the given example and the basic required parameter settings for IPv4 (Static IP address, Subnet Mask, and Default Gateway Router IP address) are configured.

Figure G-2: Network Settings for IPv4 and IPv6

IPv4

The controller is capable of simultaneous operation using IPv4 and IPv6 protocols. Using IPv4, the controller will utilize a single IPv4 address. This address will be assigned in one of 3 ways depending on the DHCP mode:

- 1. DHCP mode Static: In this configured mode, the controller uses a static IPv4 address assigned by the user. The user must supply a subnet mask and a router address.
- 2. DHCP mode Client: In this configured mode, the controller uses a dynamic IPv4 address assigned by a DHCP server on the network.
- 3. DHCP mode Server: In this configured mode, the controller will automatically assign a predefined IPv4 address of 192.168.2.11 to a PC plugged directly into its network port connection. For this reason, the controller MUST NOT be connected to a network while operating in this mode.

IPv6

The controller supports IPv6. Operating with IPv6, the controller can have multiple IPv6 addresses. It can have Link Local Address and multiple Global Unicast Addresses. These items are shown in the top section of the Network Settings screen.

The controller will have a single Link Local address. This Link Local address is automatically generated by the controller based on its MAC address. It is displayed in the Network Settings screen. The link local address can only be used on the local link (subnet) and will not be routed through the network. Browsers will not accept a link local address in a URL.

The controller may also have one or more Global Unicast Address. One of these addresses can be manually entered by the user. Entry of this IPv6 address is in the "Static IPv6 Address" field shown. Another Global address can be automatically generated by the controller using the SLAAC protocol. The SLAAC protocol allows routers to send a router advertisement messages. These messages will supply the router address, the link prefix (subnet) and network options. One of these network options, the autonomous address-configuration flag, will instruct the controller to generate a Global Unicast Address based on the router prefix and the controller's MAC address. This IPv6 address is displayed as the "Current IPv6 Address".

HTTPS (SSL)

The controller supports the Hyper-Text Transfer Protocol with SSL Encryption. It is capable of supporting browser access using HTTP and HTTPS. The standard controller is shipped with HTTP enabled and HTTPS disabled. However, specific customer configurations requiring only secured protocols will have HTTP access disabled and HTTPS access enabled. The desired HTTP protocol access is selected by prepending the URL address with the respective "http://" or "https://" to in the browser. If the controller is accessed using its IPv4 address with HTTPS, the browser will issue a screen indicating a problem with the website's security certificate as shown below.

Figure G-3: Security Problem Screen Using Explorer

In this case, select "Continue to this website (not recommended)" and the controller login screen will be presented. Continue to Login into the controller using the appropriate passwords (OmniOn Power super-user, and administrator by default). The browser will complain about a mismatched address in the certificate if the controller is accessed using its IPv4 address for HTTPS. Clicking on the Certificate error screen shows the error as seen below. The controller will be fully accessible using IPv4 and HTTPS with this mismatched address.

Figure G-4: Mismatched Address Certificate Error Screen

To enable HTTPS connectivity to the controller without browser warnings in IPv6 the following procedures must be followed:

- Contact OmniOn Power Technical Support at either TechSupport@elpc.omnionpower.com, or 877-OmniOn Power for the certificate file.
- 2. Change the file extension to ".crt"
- 3. Right click on the certificate file ASDC_2048.crt and select: "Install Certificate"
- 4. When prompted select: "Place all certificates in the following store"
- 5. Browse to select: "Trusted root certification authorities"

The device certificate created by the controller identifies the controller by its IPv6 address. Whenever the IP address of a controller is changed, it is necessary to reboot the controller. Allow 2 minutes for all the changes to be stored prior to rebooting. Upon reboot, the controller will create a device certificate for the new IP address. This process may take several minutes. Now the "https:" prepended URL can be used to access error free connection. Note: an IPv6 address must be enclosed in [] when in a URL. Sample web screen follows.

Figure G-5: HTTPS Connectivity Over IPv6 Controller Login Screen

SNMP

In addition to supporting the basic protocols on TCP/IP, the controller supports conveying system alarm and control information to a Network Operation Center (NOC) using the Simple Network Management Protocol (SNMP). The controller implements the secured SNMPv3 as well as the SNMPv2C agent that is backwards compatible with SNMPv1. The various configuration items for the protocols can be found in the Settings ► Communication ► SNMP web screen depicted below.

Figure G-6: SNMP Settings Screen

For security reasons the SNMPv1/v2c community string and SNMPv3 user information can only be modified when logged in as administrator.

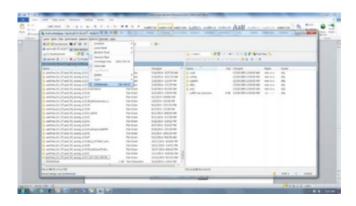
The controller has four SET/GET profiles that can be used as either SNMPv1/v2c community strings or SNMPv3 users. The Community String/User field is the value of community string or username that will be accepted by the controller. Each one of these values must be unique (or blank). The SNMP Protocol field determines how each is used. The Access Level (User, Super-User, and Administrator) field determines which SNMP operations are valid and the scope for each.

The choices are:

- USER has read-only access (SNMP GET operation) to data (OIDs) within the controller MIB
- SUPER-USER has read and write access (SNMP SET and GET operations) to OIDs within the controller MIB
- ADMINISTRATOR has read and write access to all OIDs supported by the controller

SNMPv3 users have additional protocol and password fields to support authentication and privacy. (These fields are only accessible if the SNMPv3 protocol is selected).

Authentication protocols are NONE, MD5 and SHA. Privacy protocols are NONE, DES and AES 128-bit.


Whenever the SET/GET profiles are modified the controller will require about 15 seconds before the changes take effect. This allows the controller type to perform the calculations necessary to create new crypto keys.

Four Trap Community String entries allow the user to specify a target IP address (IPv4 or IPv6) for alarm notifications (Traps) and one of the SET/GET Profiles to be used with the trap.

SFTP

The controller implements the SSH File Transfer Protocol (also Secure File Transfer Protocol, or SFTP) to provide file access, file transfer, and file management functionalities over any reliable data stream. WinSCP, an open source free SFTP client, FTP client, WebDAV client and SCP client for Windows, was used to test the file transfer capability between the controller and a remote computer. This software can be downloaded at http://winscp.net/eng/download.php.

By default WinSCP attempts to use a temporary file to allow file transfers to be interrupted and resumed. The controller's file system does not allow the creation of temporary files, so the feature must be disabled in WinSCP. Disable this feature by going to Options > Preferences > Endurance in WinSCP and check the disable for the "transfer resume/transfer to temporary file". Sample WinSCP screen shots follow.

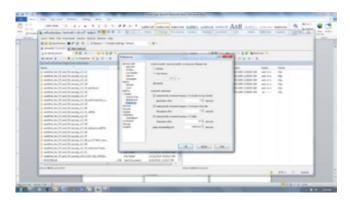


Figure G-7: Sample WinSCP Configuration Screens for Disable

When logging into the controller using WinSCP, as with FTP, the username is not validated unless the controller has the "User Name and Password" login method enabled (Settings ► Passwords).

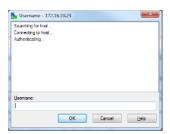


Figure G-8: WinSCP Login Screen

When connecting to a controller for the first time WinSCP will alert the user to store the controller's security key in the key cache. Press Yes. This key will remain valid until the controller's IP address is modified.

Figure G-9: WInSCP Security Key Warning Screen

Following is a sample screen of using a WinSCP SFTP connection to a Galaxy Pulsar Edge controller

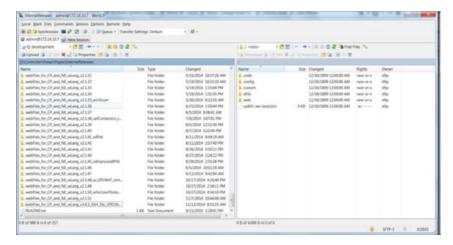


Figure G-10: WInSCP SFTP Connection

SSH

The controller supports the Secure Shell (SSH) cryptographic network protocol for secure data communication, remote command-line login, remote command execution, and other secure network services between itself and a networked computer. It is a replacement for Telnet that offers encryption. The controller's SSH implementation has been tested using PuTTY. PuTTY is an SSH and telnet client, developed originally by Simon Tatham for the Windows platform. It is open source software that is available with source code and is developed and supported by a group of volunteers. Putty can be downloaded at http://www.putty.org/ . A typical download is the "putty.exe" executable that covers the Telnet and SSH client.

When connecting to the controller for the first time, PuTTY will alert the user to store the controller's security key in the key cache (sample screen below). Select "Yes", enter a login, and the controller password, to access the SSH server (the controller). This key will remain valid until the controller's IP address is modified.

Figure G-11: PuTTY Security Key Warning Screen

Below is a sample controller's screen once the controller's SSH Server has been accessed. Standard T1.317 commands can be used.

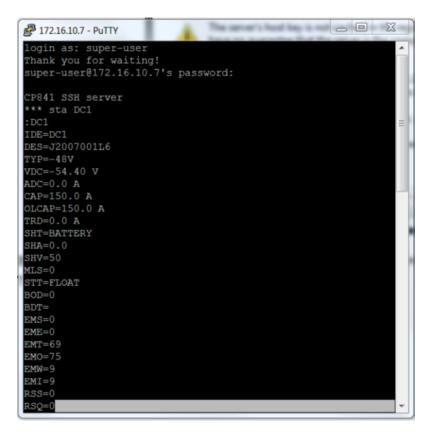


Figure G-12: PuTTY SSH Login Example Screen

Revision

Revision	Description	Date Dept./Init.
0.1	Released for review and comment.	
1.0	Initial Product Release.	
2.0	Corrected page header on pages 143-162; corrected items to Pulsar Plus; added 24V accuracy; corrected various spelling; change Table D: float range of 24V to (21 to 28), removed DC1,SCAP, BR1,TMD format changed from number to hh:mm:ss, 2nd (BT07,DES) changed to (BT08,DES), RL1 changed to RLS1 (rectifier redundancy loss alarm), corrected J4 output alarm default descriptions in Connection Pulsar section, added note to step 8 of the connecting to pulsar section.	June/2006
3.0	Enhanced power cable connection J9 descriptions in Step 8 of Connecting to Pulsar Plus.	Sept/2006
4.0	Rebranding	March/2007
5.0	Added NE843G, Added ES772 section	December/2007
6.0	Not issued	January/2008
7.0	Integrated NE843P Phoenix III controller	July/2013
9	Fixed Table 5 Wire Colors	December/2013
9.4	Updated as per template	04/18/2022
9.5	Updated page footer	4/5/2023
9.6	Updated as per OmniOn template	10/27/2023
9.7	Configuration thresholds for VRLA battery technology updated according to the NTSD47 standard.	11/21/2024

OmniOn Power Inc.

601 Shiloh Rd. Plano, TX USA

omnionpower.com

We reserve the right to make technical changes or modify the contents of this document without prior notice. OmniOn Power™ does not accept any responsibility for errors or lack of information in this document and makes no warranty with respect to and assumes no liability as a result of any use of information in this document.

We reserve all rights in this document and in the subject matter and illustrations contained therein. Any reproduction, disclosure to third parties or utilization of its contents – in whole or in parts – is forbidden without prior written consent of OmniOn Power™. This document does not convey license to any patent or any intellectual property right. Copyright© 2024 OmniOn Power Inc. All rights reserved.